Decentralized Control of HVAC SinBerBEST Considering Thermal Comfort & IAQ*

Yu Yang, Seshadhri Srinivasan, Guoqiang Hu, Costas J. Spanos

* Background & Motivation

- High building energy consumption (50%+ in SG)
- 60%+ caused by HVAC systems
- Objectives: To facilitate energy-efficient buildings by developing scalable control methods for HVAC systems, so as to
 - Minimize HVAC energy cost
 - Maintain thermal comfort & indoor air quality (IAQ)

Challenges

- Conflicting objectives and constraints due to thermal comfort and IAQ
- Nonlinear & nonconvex optimization problem
- · Various decision variables to be coordinated
- Various couplings

* HVAC System for Multi-zone Buildings

Hierarchical Decentralized Method

- The Upper Level Control: zone thermal comfort
 - Accelerated Distributed Augmented Lagrangian (ADAL) method for nonconvex problems
- The Lower Level Control: zone IAQ
 - Decentralized convex optimization

* Y. Yang, S. Srinivasan, G. Hu, C. J. Spanos, "Decentralized Control of Multi-zone HVAC Systems Considering Indoor Air Quality", *submitted to IEEE Transactions on Control System Technology, under review*, 2019.

Method	Cost (s\$)					Thermal	IAQ
	# zones						
	2	10	20	50 (x10 ³)	100 (x10 ³)	comfort	
No IAQ	98.9	162.9	507.8	1.6	2.9	✓	×
Centralized Method	100.5					✓	✓
Hierarchical Decentralized	102.7	184.9	564.4	1.7	3.0	✓	✓
DCV* I	106.2	184.9	601.7	1.8	3.1	\checkmark	✓
DCV* II	106.6	181.6	593.2	1.8	3.2	✓	✓

* Demand controlled ventilation (DCV)

Conclusions

NANYANG TECHNOLOGICAL

UNIVERSITY

- There is a minor increase of energy cost due to ventilation to guarantee IAQ.
- The sub-optimality of the *Hierarchical* Decentralized Method is less than 2%.
- 5%-11% energy cost due to ventilation is reduced compared with DCV strategies.
- Our method is scalable to buildings with 100+ zones.

"This research project is funded by the National Research Foundation Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme."

