

Plug-load Management Technology for Future Buildings

Dr. Krishnanand K.R.

Post Doctoral Scholar, Berkeley Education Alliance for Research in Singapore (BEARS)

NATIONAL RESEARCH FOUNDATION PRIME MINISTER'S OFFICE SINGAPORE

Berkeley Education Alliance for Research in Singapore Limited

2

3

4

5

Background – Buildings & Plug-Loads

Existing Smart-Plug Solutions

Smart Electrical Outlet/Socket (SEOS)

SEOS Features and Case-Study

Discussions & Future Work

Background – Building Energy

The total electricity consumption in Singapore is nearly 50TWh (or 50 billion kWh units)^[1]

Buildings account for more than one-third of the nation's total electricity consumption^[2]

Singapore Energy Statistics (2018), Energy Market Authority (EMA), Singapore. URL: <u>https://www.ema.gov.sg/cmsmedia/Publications_and_Statistics/Publications/ses/2018/energy-balances/index.html</u>
 Super Low Energy Building Technology Roadmap (2018), Building and Construction Authority (BCA), Singapore. URL: <u>https://www.bca.gov.sg/GreenMark/others/SLE_Tech_Roadmap.pdf</u>
 Building Energy Benchmarking Report (2017), Building and Construction Authority (BCA), Singapore. URL: <u>https://www.bca.gov.sg/BESS/BenchmarkingReport/BenchmarkingReport.aspx</u>

Background – Plug-Load Energy

Plug-loads are small, diverse, and scattered throughout buildings.

Difficult to manage!

Modern buildings spend around 25%-50% energy on plug-loads^[1]

Example of Impact

Every year California's office plug-loads account for

- 3,000 GWh , \$400 million
- 700,000 tonnes of CO₂
- ~= 140,000 cars!

Plug and process loads (**PPLs**) account for 33% of U.S. commercial building electricity consumption.

URL: <u>https://www.gsa.gov/about-us/organization/office-of-governmentwide-policy/office-of-federal-highperformance-buildings/resource-library/energy-water/plug-load-frequently-asked-questions-faq#6 [2] Sheppy, M., C. Lobat, S. Pless, L. P. Gentile, and P. Torcellini. "Assessing and reducing plug and process loads in retail buildings." National Renewable Energy Laboratory (NREL) (2013).</u>

^[1] Bloom, Michael. "Plug Load Frequently Asked Questions (FAQ)", U.S. General Services Administration.

Background – Smart Grid & OEM

Be operationally secure

[1] Energy Efficiency Policy Brief (2018), International Energy Agency (IEA) URL: <u>https://www.iea-4e.org/document/418/policy-brief-intelligent-efficiency-smart-homes</u>
 [2] Open Electricity Market. URL: <u>https://www.openelectricitymarket.sg/home</u>

[3] Demand Side Management, Energy Market Authority (EMA). URL: <u>https://www.ema.gov.sg/Demand_Side_Management.aspx</u>

Potential Energy & Cost Savings

In an office space or an educational campus or commercial building, many plug-loads are always ON. Ex: vending machines, water coolers, plugged-in refrigeration, packaged terminal air conditioners,...

Max. Cost Savings Potential could be >72%, considering Demand Management and Open Electricity Market (OEM).

(OEM \Rightarrow Energy plans with varying rates for electricity)

Plug-Loads & Smart-Plugs

Conventional

Socket

Existing "Smart" Plug Solutions

No existing "smart" plug or socket can access the useful metadata. Not smart enough!

S \rightarrow number of conventional sockets P \rightarrow number of smart plugs A \rightarrow number of appliances/plug-loads

Most commonly, $S \ge P$ and $S \ge A$

The total states possible, *T=S.(P+1).(A+1)* Only one of the states is correct. Large space for configuration error: **(T-1)**

Image Courtesy: Samsung SmartThings, Dlink, Belkin WEMO, TP-Link, Amazon, Pluwise, Sonoff, Xiaomi, Orvibo, and Powertech

Our Solution – Smart Electrical Outlet/Socket (SEOS)

SEOS Features

Plug-Load state identification using SEOS

A stand fan and an LCD desktop monitor were connected to a hardware unit of SEOS one after another. Corresponding voltages and currents are shown.

SEOS Features

Screenshot of a GUI capturing real-time information on plug-loads connected to multiple SEOS hardware.

Case Study – Scheduling for n-Building-grids

11-Node Test-system of 10 Prosumer Buildings

A cost reduction of 30%-35% has been achieved in the cases within the study, despite the increase in WEP.

Node voltages have been checked to be within ±5% limits using Holomorphic Embedded Power-Flow (HEPF) algorithm. Differential Evolution (DE) algorithm has been used to schedule 10-20 plug-loads to minimize cost of operation, under power constraints.

Load scheduler must also check for voltage violations of building cluster to ensure power-quality of supply.

Discussions

- ✓ An innovative plug-load management solution (SEOS) has been presented for future buildings, to realize Responsive Building-grids.
- ✓ SEOS configuration enables access of metadata and real-time data of plug-loads, leading to many digitalized services.
- ✓ SEOS facilitates high-fidelity Demand Side Management (DSM), and ideally must operate based on power-flow information so as to maintain power-quality.
- ✓ Other than DSM, SEOS solution holds potential for:

Asset Management (real-time inventory)

Access Management (allow/disallow plug-loads)

Customized Electrical Safety (limit currents)

Grid Services (demand response)

Future Work – Interoperable Subsystems

APPENDIX – Spin-off Company – ENBED Pte. Ltd.

The Current Chart

- 3 Research Link, Innovation 4.0 Singapore 117602
- +65-83940239
- krishnanandkr@u.nus.edu \square
- www.enbed.sg
- Plug-load identification
- Remote control of loads
- Load-specific safety
- Access management & Security
- Energy Management & Statistics
- Real-time metrics & Analytics
- Plug-load asset tracking
- Smart Scheduling

krish@bears-berkeley.sq

Funding up to S\$100,000 Secured

Feature	Value		
Operating Voltage	220V – 240V		
Operating Frequency	50Hz		
Maximum Current	13A		
Maximum Power	3200W		
Metering Accuracy	Class 1, IEC 62053-21		
length x breadth x depth	86mm x 86mm x 35mm		
Standards	IEC-61508, BS-1363, SS- 145		
Communication Protocol Used	Wi-Fi 2.4GHz		
Supported App Platforms	Android >=4.4 iOS >=8, >=Win7		
Physical Configurations	 Wall-socket/fixed Smart-plug/portable 		

17

APPENDIX – SEOS Feature Comparison

	FEATURES FOR COMPARISON	TYPICAL SOCKET	MOST COMMERCIAL SMART PLUGS	SEOS WALL-SOCKET	SEOS PORTABLE-SOCKET
1	Electrical connectivity to the appliance	✓	\checkmark	\checkmark	\checkmark
2	Fuse-based protection or current limiting protection	-	\checkmark	\checkmark	\checkmark
3	Physical security (not easily displaceable)	\checkmark	-	\checkmark	-
4	Remote ON/OFF control of the socket	-	\checkmark	\checkmark	\checkmark
5	Measurement of energy consumption	-	\checkmark	\checkmark	\checkmark
6	Real-time voltage, current, active & reactive powers	-	Optional	\checkmark	\checkmark
7	Recording/display of electrical measurements and analysis	-	Optional	\checkmark	\checkmark
8	Monitoring of power-quality information and anomalies	-	-	\checkmark	\checkmark
9	Plug-load specific customization of protection	-	-	\checkmark	\checkmark
10	Automated identification of appliances	-	-	\checkmark	\checkmark
11	Automated, real-time and online appliance list	-	-	\checkmark	\checkmark
12	Automated locating of appliances	-	-	\checkmark	-
13	Automated appliance authentication (Building Firewall)	-	-	\checkmark	Optional
14	Act as realistic infrastructure for smart-grid applications (scheduling, optimization, accurate item-wise billing, auditing)	-	-	~	Optional