

SinBerBEST

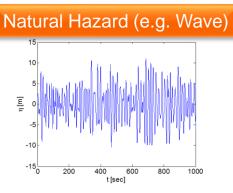
2019 Symposium: People, Buildings & Data – Shaping a Sustainable Future Aug. 5, 2019; 11:55-12:25 Lecture 2; CREATE Tower, NUS, Singapore

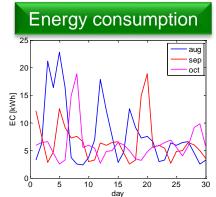
Uncertainty Quantification & Hybrid Simulation for Energy Efficient Building Envelopes

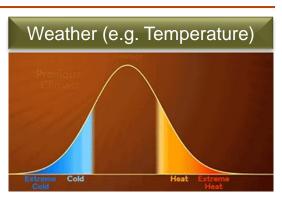
Khalid M. Mosalam, PhD, PE

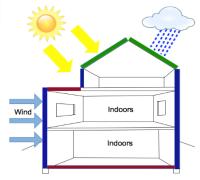
Taisei **Ents** sor of Civil Engineering Director, Pacifi **De Even**ake Engineering Research (**PEER**) Center **Extremeniversity of California, Berkeley**

Acknowledgement: Prof. U. Alibrandi, Dr. S. Günay, Dr. Y. Gao, Mr. J. Chen & Mr. M. Wilder

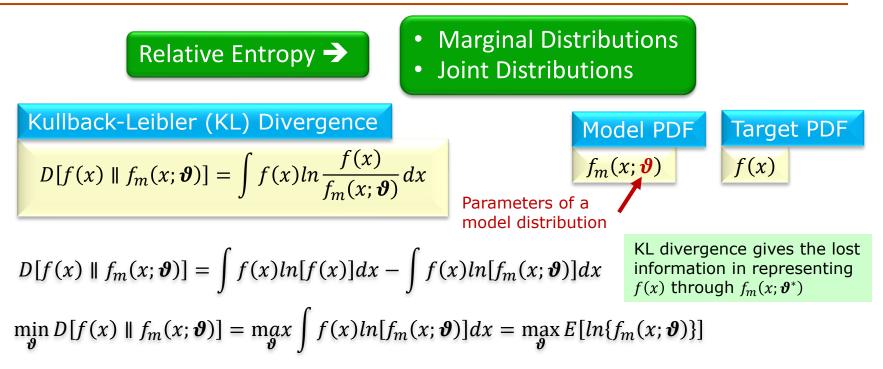

We Will Talk About:


- \checkmark Uncertainties
- ✓ Daylighting
- ✓ Hybrid Simulation (Hardware-in-the-Loop: HiL)
- ✓ Simulation of Light through Active Buildings: SLAB


Uncertainties


Sources:

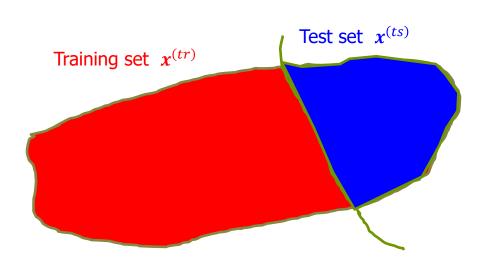
- **Natural Hazard** (Haze, Rain, Flood, Wave, Wind, Earthquake, ...)
- Weather (Temperature, Humidity, Solar radiation, ...)
- **Use** (Human occupancy, Energy consumption, ...)
- **Modeling** (Assumptions, Material behavior, ...)



Quantifying Tools:

- Stochastic Processes
- Random Fields
- Machine Learning (ML)
- Deep Learning (ANN, CNN, RNN)
- Reinforcement Learning (RL)

Information Theory for Uncertainty Quantification (UQ)

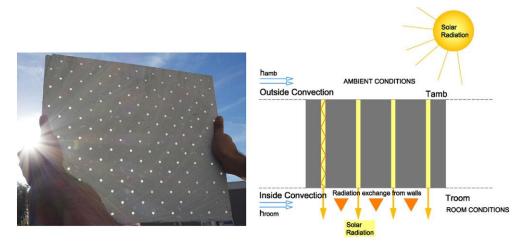


$$\boldsymbol{\vartheta}^* = \max_{\boldsymbol{\vartheta}} \left(\frac{1}{n} \sum_{i=1}^n ln[f_m(x^{(i)}; \boldsymbol{\vartheta})] \right)$$

The minimum divergence between f(x) underlying the data & the model $f_m(x; \vartheta)$ is equivalent to MLE of the model

Maximum Likelihood Estimation (MLE)

Algorithm for Model Selection



1.
$$m = 1,2,3,...$$
 (Ex. LN, Weibull, ...)
a. Choose model $f_m(x; \vartheta)$
b. $\vartheta^* = \vartheta^*[x^{(tr)}]$
c. $f_m(x) = f_m(x; \vartheta^*)$
2. $D_m = D[f(x^{(ts)}) \parallel f_m(x^{(ts)}, \vartheta^*)]$
3. $f_{opt}(x) = argmin\{D_1, D_2, D_3, ...\}$

Difficulties in Daylighting Analysis of Complex Fenestration Systems (CFS)

Light-transmission properties of new façade systems are complex:

- ✓ Involving complex light-propagation mechanism
- Changing state according to environment and/or commands (active/adaptive)

Translucent Concrete Panels (TCPs): A novel fenestration with complex optical path [Ahuja & Mosalam, 2017].

An adaptive façade system [Schleicher et al., 2011]

Importance & Approaches of Daylighting Analysis

Daylighting is an important part of the overall building performance with impacts on:

- Occupants wellbeing/productivity
- Visual comfort, e.g. glare
- Productivity loss due to insufficient daylight

Energy use of buildings

- Lighting load from lack/excess of daylighting
- Cooling/heating load

Numerical simulation

Ray tracing:

✓Backwards ray tracing

- ✓ Photon mapping
- ✓Monte-Carlo ray tracing

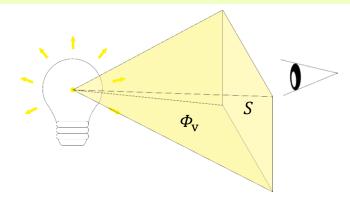
Finite element radiosity method

Physical testing

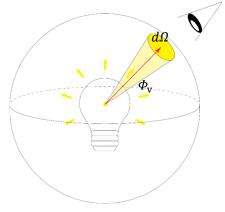
Full scale tests

Ex.: FLEXILAB at Lawrence Berkeley National Laboratory (LBNL)

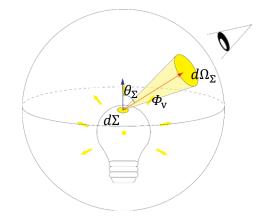
Reduced scale tests


Ex.: SinBerBEST scanning heliodon

Basic Definitions in Daylighting Analysis

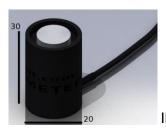

Luminous flux Φ_v : weighted (perceived by human eyes) power of light emitted by a light source [Lumen].

φ_v


Illuminance $E_v = \frac{d\Phi_v}{dS}$: total luminous flux from all directions incident on a surface *S* per unit area [Lux]. Reflected luminance from a surface is proportional to illuminance the surface receives and its reflectance.

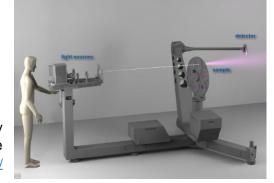
Luminous intensity $I_{\nu} = \frac{d\Phi_{\nu}}{d\Omega}$: luminous flux emitted by the entire light source in one direction per solid angle Ω [**Candela**].

Luminance $L_{\nu} = \frac{d^2 \Phi_{\nu}}{d\Omega_{\Sigma} d\Sigma \cos \theta_{\Sigma}}$: luminous intensity per unit area of the light source Σ [**Candela**/ m^2] "perception of brightness".


Sensing Technology in Daylighting Research (1/2)

- Luminous flux measurement (Integrating Spheres)
 - ✓ Internal near-ideal diffusively reflective (Lambertian) coating scatters light uniformly "integrating luminous flux" in all directions.
 - ✓ Measure the output power of lights but **costly**.

https://en.wikipedia.org/wiki/Integrating_sphere


- Illuminance measurement (<u>Meters</u>)
 - ✓ Ubiquitous in engineering to estimate light distribution in a space.
 - ✓ Loses the **directional information** of incident light.

Illuminance sensor ©Beta Nit™

Sensing Technology in Daylighting Research (2/2)

- Luminance/luminous intensity distribution
 - Luminance meters
 - ✓ Measures luminance in single solid angles.
 - Digital cameras
 - ✓ Use High Dynamic Range Image (HDRI) method by costly digital cameras or cheap Raspberry Pi (RPi) cameras.
 - ✓ Need calibration in advance.
 - Goniophotometer
 - Accurate measurements of emitted luminance distribution of materials to calculate their transmission functions.
 - ✓ Slow and **expensive**.

A model of Goniophotometer used by LBNL & Solar Energy Research Institute of Singapore, <u>http://www.pab.eu/</u>

luminance meter <u>https://gossen-photo.de/en/mavo-spot-2-usb/</u>

Lighting Res. Technol. 2017; Vol. 49: 904-921

Ubiquitous luminance sensing using the Raspberry Pi and Camera Module system

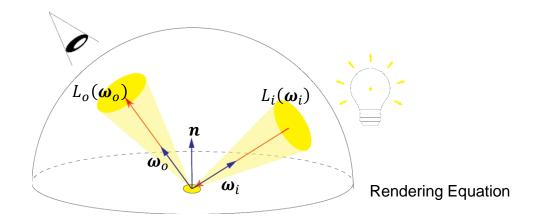
AR Mead MS and KM Mosalam PhD

Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, CA, USA

Received 9 February 2016; Revised 11 April 2016; Accepted 21 April 2016

Goal of Numerical Methods for Daylighting Simulation

Solve the fundamental rendering equation (Immel et al., 1986; Kajiya, 1986):

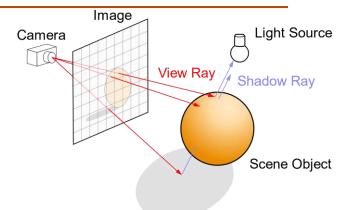

$$L_o(\boldsymbol{\omega}_o) = L_e(\boldsymbol{\omega}_o) + \int_{\Omega} f_r(\boldsymbol{\omega}_o, \boldsymbol{\omega}_i) L_i(\boldsymbol{\omega}_i) (\boldsymbol{\omega}_i \cdot \boldsymbol{n}) d\boldsymbol{\omega}_i$$

 $L_o(\boldsymbol{\omega}_o)$: output (reflected & emitted) luminance in direction $\boldsymbol{\omega}_o$;

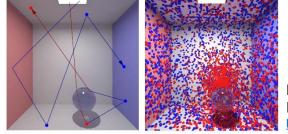
 $L_e(\boldsymbol{\omega}_o)$: luminance emitted by the surface;

 $f_r(\boldsymbol{\omega}_o, \boldsymbol{\omega}_i)$: reflective transmission function (relating reflected luminance to incident one); $L_i(\boldsymbol{\omega}_i)$: incident luminance in direction $\boldsymbol{\omega}_i$; and

 \boldsymbol{n} : normal vector to the surface.

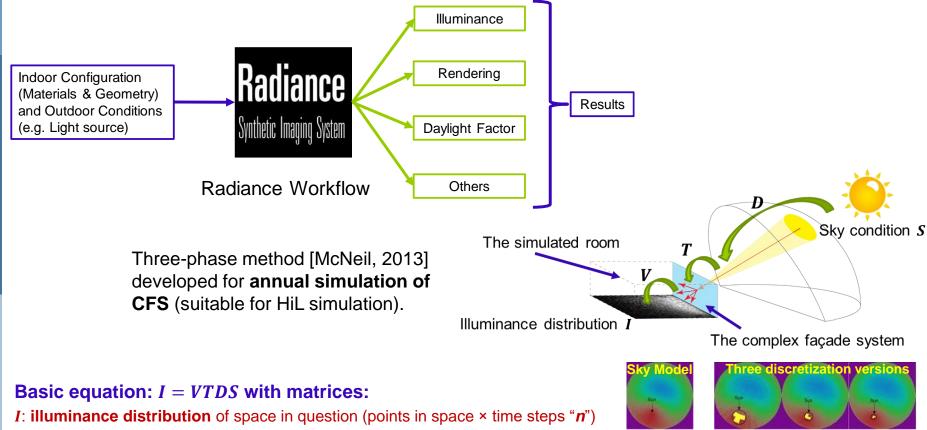

Numerical Methods for Daylighting Simulation

Backwards ray tracing method [Whitted, 1980]


- shooting "view rays" from an observer to surfaces & simulating light propagation (reflection, refraction & scattering).
- unable to handle scenarios with complex reflections & refractions, e.g. indirect diffuse reflections.

Photon mapping method [Jensen, 1996 & 1997]

- <u>forward step</u>: photons emitted from all sources & reflected, refracted or absorbed probabilistically.
- <u>backward step</u>: view rays shot from an observer "ray tracing" & illuminance calculated as a density estimation of photons.
- · Can handle indirect diffuse illuminations.

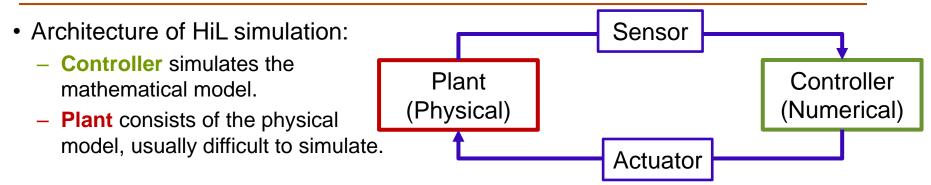

Backward ray tracing method https://en.wikipedia.org/wiki/Ray_tracing_(graphics)#/media/Fi le:Ray_trace_diagram.svg

Photon mapping method. Left: forward step for two photons. Right: density distribution of photons at end of forward step. https://www.radiance-online.org/learning/documentation/photonmap-user-guide

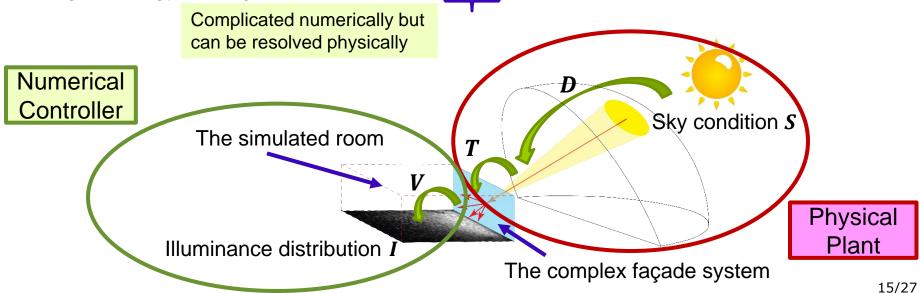
Radiance & Three Phase Simulation Methodology for Daylighting Analysis

Radiance [Ward, 1994]: Industry main tool for geometric optics using backwards ray tracing & photon mapping.

D: daylight maps *p* to a luminance component incident on façade surface (luminance components in 145 Klems basis × *p*)


T: façade transmission maps incident to output luminance (emitted × incoming luminance components in 145 Klems basis)

V: view maps output façade luminance to room illuminance distribution (points in space × emitted luminance components) 13/27


Physical Testing Approaches & Comparisons

	Advantages	Disadvantages
Numerical Simulation	Versatile (multi-physics abilities)Fast & cost-effective	Uncertainties from model assumptionsDifficult to simulate complex systems
Physical Testing	 Eliminating modeling & computational errors Can test complex systems 	 Cost, slow & needs expertise Laws of similitude limit geometry & material choices of the experiments
or Hardware (HiL) approa	Accuracy Diverger (x) II f _m (x;	S or HiL Physical

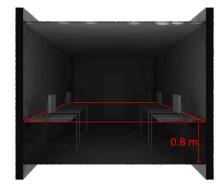
Hardware-in-the-Loop (HiL) Approach in Daylighting Analysis

• In daylighting analysis, the computationally most difficult part is the transmission of light energy through the CFS: I = V TDS

Simulator of Light into Active Buildings (SLAB)

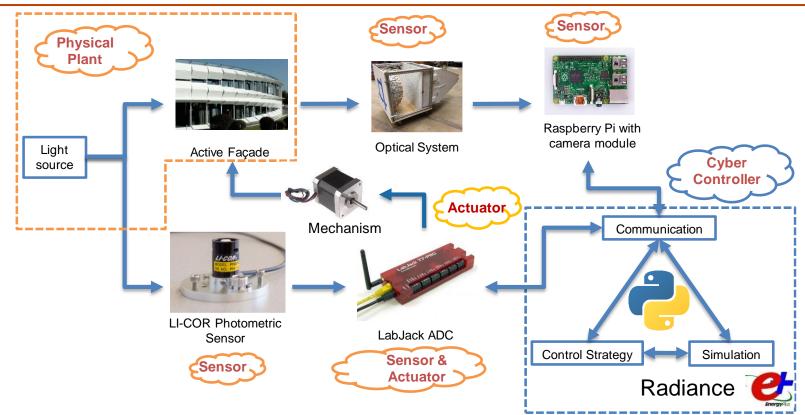
Motivation & Objectives:

- Few platforms are available to perform cyber-physical validation of daylighting performance of *complex building façades including outdoor conditions*.
- CFS (material, geometry & mechanisms) are challenging for *numerical simulations* considering daylighting, thermal performance, etc.


Develop a *testbed* for CFS (typically, require large-scale testing).

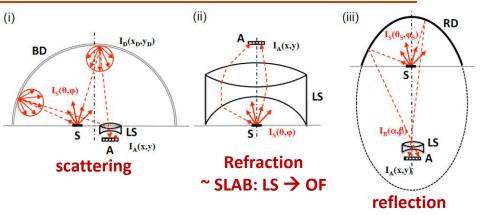
Develop a parallel luminance sensor as a *portable* Goniophotometer.

Develop a HiL platform for performance-based design of CFS including UQ.



Simulated room illuminance distribution

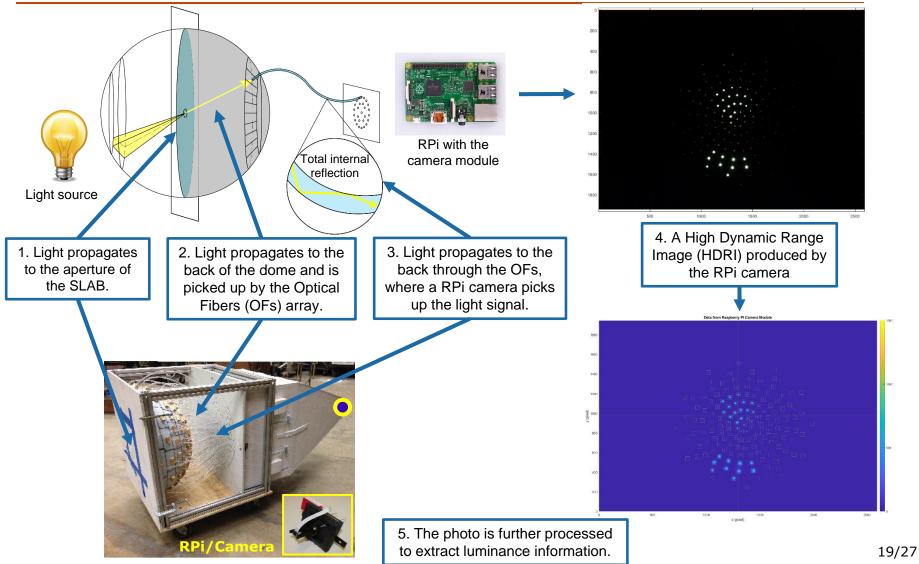
Optical component of SLAB In-field operation of SLAB Computational component of SLAB: Radiance model


HiL Architecture of SLAB

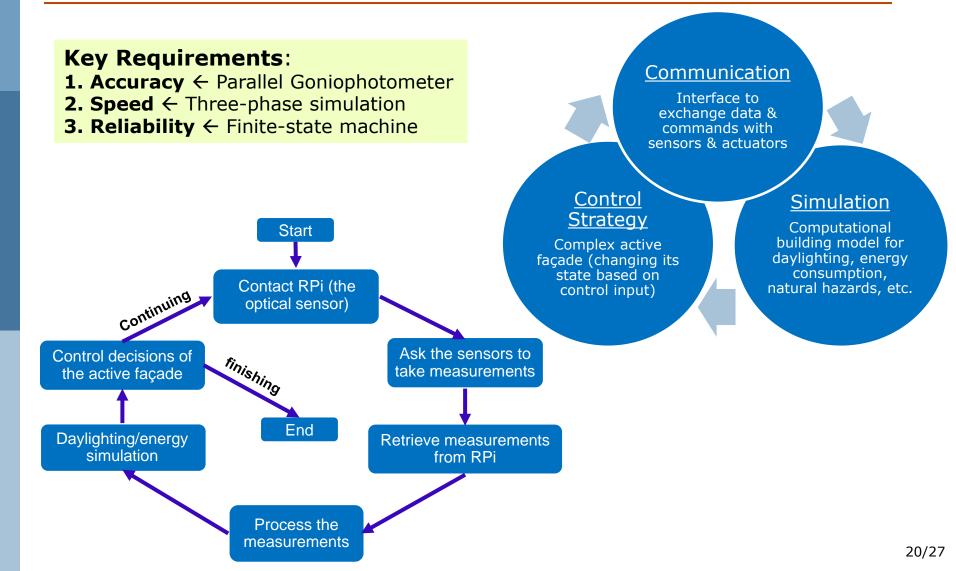
- □ HiL: controllers (computational models) & plant (physical model).
- □ Sensors & actuators: interface between physical & cyber spaces.
- **Controller** Daylighting (Radiance), energy (EnergyPlus) simulation & control strategies.
- Plant CFS (difficult to simulate computationally).
- □ Actuator LabJack analogue-to-digital converter (ADC) & active parts of CFS.
- **Sensors** Photometric sensors & optical system of SLAB.

The Optical Sensor of SLAB (1/2)

• A parallel Goniophotometer to simultaneously measure all emitted luminance components from a source is a complex optical system.


Parallel Goniophotometers: **S** – Source, **A** – Detector Array, **LS** – Lens, **BD** – Back-scattering Dome, **RD** – Reflecting Dome [Karamata & Andersen, 2013]

- SLAB is a simplified parallel Goniophotometer:
 - 145 Klems bases to discretize the 2π hemisphere.
 - OFs guide light to a sensor instead of complex LS.
 - Luminance level of each patch sampled at the OF.



<u>Left</u>: Klems bases divide the sampling dome. <u>Right</u>: OFs connected to the dome of SLAB.

The Optical Sensor of SLAB (2/2)

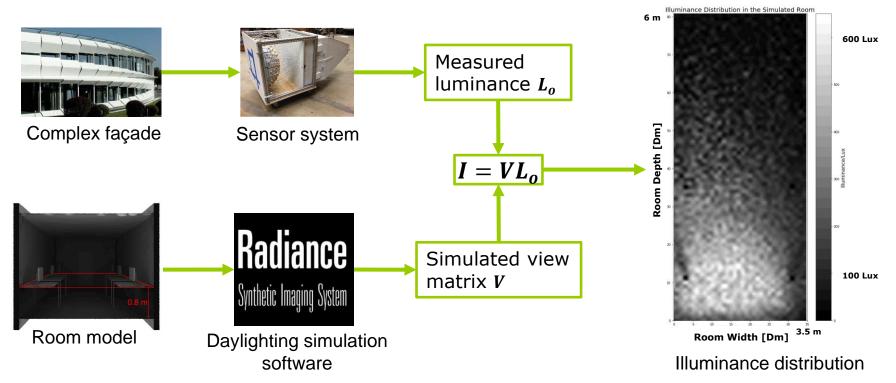
The Cyber Components of SLAB

The Communication Solution

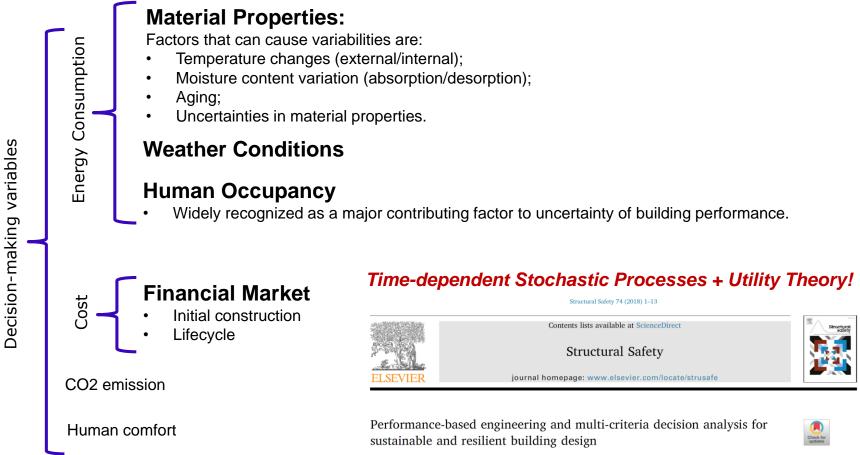
The Raspberry Pi (RPi) optical sensor: Server & PC running main program: Client.

• Step 1: RPi sets up communication channels using Python "socket" library & starts listening.

• Step 2: PC sets up a socket to RPi's address & sends an inquiry. The RPi sends a reply & starts taking measurements, then RPi starts listening again.



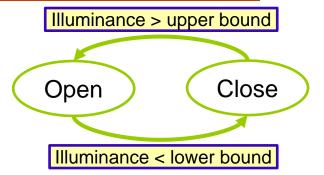
• Step 3: Knowing that measurements occurred, data is obtained from RPi.


The Daylighting Simulation Capability

- The daylighting simulation is conducted using the three-phase method: I = VTDS
- Instead of calculating the emitted luminance $L_o = TDS$ of the façade, the SLAB system directly measures the output L_o from the façade \rightarrow Accurate high-speed simulation.

Prospect of Simulation Capabilities

Daylighting simulation can be combined with other issues, e.g. energy simulation & UQ analysis.

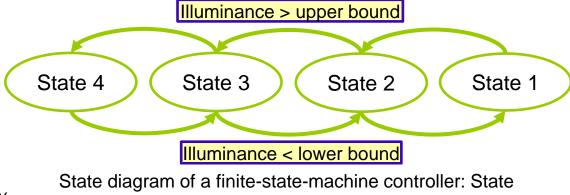


Khalid M. Mosalam^{a,*}, Umberto Alibrandi^b, Hyerin Lee^c, Jaume Armengou^d

The Control Strategy

SLAB can implement & test many types of control strategies, depending on choice & goal of active façade.

• A façade with only *two states* (open/close), a bang-bang controller is implemented based on daylight condition in a room.

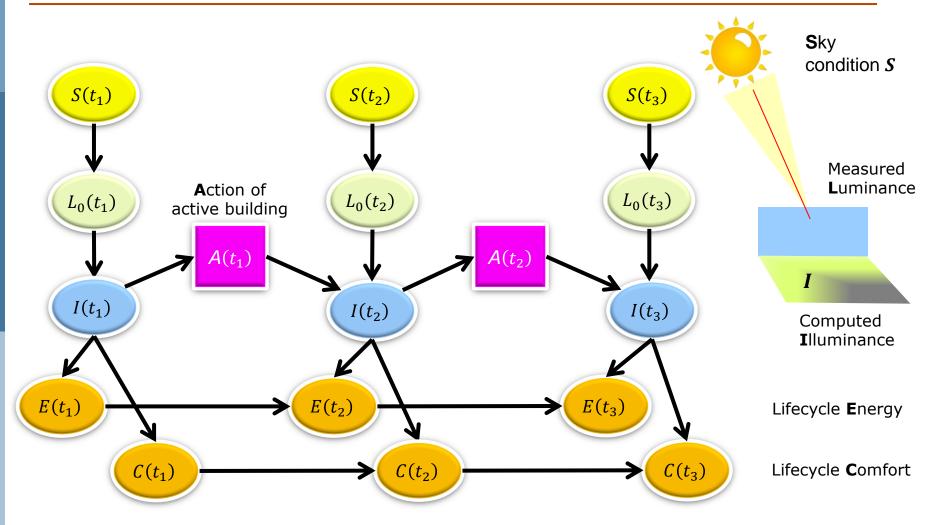


A façade with multiple states, a finite-state machine is used (<u>Demo</u>) or with continuous shifting states, more sophisticated controllers, e.g. PID, can be used.

<u>Demo</u>: A façade with 4 transmittance states (discrete model of an electrochromic glass) tested in SLAB.

Four-state façade with selectable transmittance of 100%, 80%, 40% & 20% (step motor is also shown)

1 has highest transmittance & State 4 has the lowest.


Simulator of Light into Active Buildings (SLAB) A Demonstration

Jiawei Chen Morgan J. Wilder

http://sinberbest.berkeley.edu/slab

Prospect of SLAB Capabilities: Lifecycle Analysis Using Bayesian Networks

Concluding Remarks

- HiL (e.g. using SLAB) is an economical and accurate testing method that can complement other pure testing & simulation methods.
- The benefits of HiL increase when used in conjunction with uncertainty qualification for performance-based engineering solutions.
- HiL can be conveniently applied to a variety of "real" engineering problems (e.g. active façades), ranging widely in the underlying physics including problems involving multi-physics phenomena.
- Work is being carried out to further reduce the size of the SLAB system and increase its accuracy for the use with the Heliodon for a variety of applications including lifecycle analysis using BNs.

Thank you! Questions?