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Abstract

In this paper, a novel method to determine the distribution of a random variable

from a sample of data is presented. The approach is called generalized kernel

density maximum entropy method, because it adopts a kernel density represen-

tation of the target distribution, while its free parameters are determined

through the principle of maximum entropy (ME). Here, theME solution is deter-

mined by assuming that the available information is represented from general-

ized moments, which include as their subsets the power and the fractional

ones. The proposed method has several important features: (1) applicable to dis-

tributions with any kind of support, (2) computational efficiency because theME

solution is simply obtained as a set of systems of linear equations, (3) good trade‐

off between bias and variance, and (4) good estimates of the tails of the distribu-

tion, in the presence of samples of small size. Moreover, the joint application of

generalized kernel density maximum entropy with a bootstrap resampling

allows to define credible bounds of the target distribution. The method is first

benchmarked through an example of stochastic dynamic analysis. Subsequently,

it is used to evaluate the seismic fragility functions of a reinforced concrete

frame, from the knowledge of a small set of available ground motions.

KEYWORDS
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1 | INTRODUCTION

A random variable is fully characterized from a probabilistic point of view by the knowledge of its probability density
function (PDF) or cumulative distribution function (CDF). Therefore, the evaluation of the probability distribution is
of concern. Generally, a sample of data is available, collected from experimental data or a network of sensors. It is
assumed that the distribution of the population is known (eg, Gaussian, lognormal, or Weibull) whose parameters are
estimated from the sample data, through the “method of the moments” or the “maximum likelihood method.” However,
in some cases, the known parametric distributions cannot accurately fit the data and/or have good prediction capabilities
over the unseen data.

In literature, several techniques have been proposed to determine a PDF from the knowledge of the first 4 moments,
eg, the Pearson family of distributions1 or the recently proposed shifted generalized lognormal distribution.2 However, it
is known that further information about the distribution can be obtained by also considering higher‐order moments or
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other quantities derived from the data. The first general representations for a PDF have adopted Hermite polynomials,
eg, A‐type and C‐type Gram Charlier series and the Edgeworth series expansion.3,4 An improvement is represented by
the model proposed by Winterstein,5 and it is largely applied in engineering.

The choice of the distribution type is an open issue, from a conceptual and practical point of view. In the presence of
limited information (sample of small size and/or lower‐order moments), in the most general case, there is no theoretical
justification to prefer one distribution over another. In such case, an attractive technique is based on the principle of max-
imum entropy (ME).6-8 TheME distribution represents the least biased distribution given the available information. How-
ever, the application of the ME principle, as typically adopted in literature, has some practical and theoretical limitations.

If the power moments represent the available information, then the ME PDF fME(x) may require a large numberM of
moments (M ≥ 4) to accurately describe the tails of the distribution. However, the moment problem is an ill‐posed prob-
lem.9 Thus, for largeM, the entropy maximization algorithm experiences numerical instability. Moreover, at the tails, the
ME distribution oscillates because of the nonmonotonic nature of the polynomial embedded in the fME(x). Thus, only the
lower‐order moments are typically considered, but in such case, fME(x) hardly models tails fatter than the Gaussian.
Therefore, the tails of many distributions cannot be well fitted by the ME distribution with M ≤ 4.10 Furthermore, from
a practical point of view, we do not have the true moments, but samples of data, from which the sample moments are
derived. Depending on the size of the sample, the estimates of the higher‐order moments provide large statistical errors,
which imply high bias in the estimate of the tails of the ME PDF. Consequently, the modeling of the tails of the distri-
butions from samples of data is challenging.

To this aim, we consider the application of the ME principle with the fractional moments, defined as powers of real
numbers and not only integers.11-13 It is known that (1) a reduced number of fractional moments may accurately model
the tails of fME(x) and (2) the fractional moments can be well estimated from a reduced sample of data. However, several
issues remain open. First, while an infinite sequence of power moments uniquely characterizes most random variables of
practical interest (with some notable exceptions, eg, lognormal distribution), an infinite sequence of fractional moments
only characterizes positive random variables. Second, in the existing literature, the optimal powers of the fractional
moments are determined within the entropy maximization procedure; however, the resulting optimization procedure
is not convex, so that, given a sample of data, the uniqueness of the ME distribution may not be guaranteed. Third,
the determination of fME(x) requires the numerical evaluation of integrals, which is generally complicated.

The main objective of this paper is to develop a unified framework based on the ME, applicable to random variables
with any kind of support (bounded, semibounded, or unbounded) and able to provide the least biased reconstruction of
the distribution including its tails, from the knowledge of a small number of available data. This is achieved by
discretizing the moment problem representing the target PDF fX (x) as a sum of kernel densities fKDME(x;p) ≅ fX (x)

14,15

whose free parameters collected in the vector p are obtained by applying the ME principle to the discretized moment
problem. Differently from Alibrandi and Ricciardi,15 here, the constraints of the ME method are the generalized
moments, which include, as their subsets, the classical power and the fractional moments. The proposed approach is
referred to as generalized kernel density maximum entropy method (GKDMEM) because it adopts a kernel density
(KD) representation (KDR) of the target PDF, while the parameters are determined through the ME method, by using
as constraints the generalized moments.

The paper is devoted in particular to engineering problems where only samples of data are available, and not the cor-
responding population generalized moments. In such cases, the main task is the evaluation of a good bias‐variance trade‐
off, such that the kernel density maximum entropy (KDME) distribution follows the data, but it keeps good prediction
capabilities over the unseen data. This issue is explored through the Akaike information criterion,16 which allows to
define the optimal fKDME(x;p), for the given data sample.

After describing the main features of the proposed method, the GKDMEM is benchmarked to a Duffing oscillator,
whose response distribution is known in a closed form. Subsequently, the method is applied to a reinforced concrete
frame subjected to seismic excitation, to evaluate the corresponding fragility functions. This example shows that the
GKDMEM gives an optimal distribution with respect to the available information.
2 | ME FORMALISM

2.1 | Entropy

In information theory, the entropy of a random variable can be interpreted as the degree of information that the
observation of the variable gives. Let us consider a discrete‐valued random variable X with probability distribution
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given by pi evaluated at xi, i = 1, 2, …, N. The Shannon's entropy functional6,7 of the discrete distribution p is defined as
follows:

H pð Þ ¼ H p1; p2;…; pNð Þ ¼ −∑
N

i¼1
pi log pi: (1)

The entropy is larger when the random variable X is more “random,” ie, more unpredictable and unstructured. This
is seen in Equation 1 where it is noted that the entropy is small if the values of pi are all close to zero or to one, and large
otherwise.

The (differential) entropy of a continuous‐valued random variable X with PDF fX (x) is

H fð Þ ¼ −∫f X xð Þ log f X xð Þdx: (2)

Let us assume that X follows a uniform distribution fX (x) = 1/ξ, defined in the interval X ∈ [0, ξ]. In view of
Equation 2, its entropy is H( f ) = log (ξ), and it is large for ξ large. This is expected since a small value of ξ implies that
X is concentrated on a small interval, and its entropy (ie, randomness) is small. It is here noted that, differently from the
Shannon's entropy H(p) for discrete‐valued random variables, the differential entropy H( f ) is not a correct information
measure for continuous random variables, since it can assume negative values and lacks invariance under a change of
variables. Jaynes has shown17,18 that a good information measure for a continuous random variables is

Hc fð Þ ¼ −∫ f xð Þlog f xð Þ
m xð Þ
� �

dx; (3)

where m(x) is an “invariant measure” function. Since f (x) and m(x) transform in the same manner under a change of
variables x → y(x), it follows that Hc( f ) is invariant. It is also closely related to the Kullback‐Leibler (KL) divergence
D (f1, f2) (also called relative entropy) measuring the entropy difference between 2 PDFs

D f 1; f 2ð Þ ¼ ∫f 1 xð Þlog f 1 xð Þ
f 2 xð Þ
� �

dx ¼ ∫f 1 xð Þlog f 1 xð Þ½ �dx−∫f 1 xð Þ log f 2 xð Þ½ �dx ¼ H f 1; f 2ð Þ−H f 1ð Þ: (4)

By comparing Equations 3 and 4, it is seen that Hc( f ) = − D( f1, f2) by setting f (x) ≡ f1(x) and m(x) ≡ f2(x). The KL
divergence may be considered a measure of the “distance” between 2 distributions, since it is always nonnegative for all
the possible distributions f1(x) and f2(x), while D( f1, f2) = 0 only when f1(x) ≡ f2(x).
2.2 | ME probability distribution of a discrete random variable

Let us consider a discrete‐valued random variable Xwith probability distribution given by pi evaluated at xi, i = 1, 2, …, N,

and ∑N
i¼1pi ¼ 1. The constraints imposed by the available information of X are given by Gk ≡E gk½ � ¼ ∑N

i¼1gk xið Þpi,
k = 1, 2, …,M. According to Jaynes,19 the best (minimally prejudiced) assignment probabilities, subjected to the satisfac-
tion of the available information, maximize the entropy as follows:

max
p

H pð Þ

∑
N

i¼1
pi ¼ 1

∑
N

i¼1
gk xið Þpi ¼ Gk; k ¼ 1; 2;…;M

8>>>>>>><>>>>>>>:
; (5)

where H(p) is the Shannon's entropy defined in Equation 1. The solution of Equation 5 is known as the ME probability
distribution, and it can be interpreted as the density that is compatible with the measurements and imposes the
minimum number of assumptions on the data. Therefore, it “represents the most honest description of our state of
knowledge.”18 The extended unconstrained functional of Equation 5 reads as
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Lp p; λð Þ ¼ H pð Þ− λ0−1ð Þ ∑
N

i¼1
pi−1

� �
− ∑

M

k¼1
λk ∑

N

i¼1
gk xið Þpi−Gk

� �
; (6)

where λ collects the Lagrange multipliers λ1, λ2, …, λM corresponding to the constraints containing, respectively, the
averages G1, G2, …, GM. By imposing the stationarity conditions with respect to pi of Lp p; λð Þ (Equation 6), one obtains

pME
i λ1; λ2;…; λMð Þ ¼ N0 λ1; λ2;…; λMð Þ exp − ∑

M

k¼1
λkgk xið Þ

� �
; i ¼ 1;…;N ; (7)

where N0 = exp (−λ0) is a normalization constant. The Lagrange multipliers can be obtained as a solution of a system of
M nonlinear equations, obtained by substituting pME

i λð Þ of Equation 7 into the M constraints of Equation 5. Typically, a
more efficient numerical procedure is used. By substituting pME

i λð Þ into the definition of the Shannon's entropy
(Equation 1), it follows that the Lagrange multipliers are evaluated through the minimization of the following uncon-
strained convex functional8,15:

ΓME λ1; λ2;…; λMð Þ ¼ λ0 λ1; λ2;…; λMð Þ þ ∑
M

k¼1
λkGk; (8)

where

λ0 λ1; λ2;…; λMð Þ ¼ log ∑
N

i¼1
exp − ∑

M

k¼1
λkgk xið Þ

� �� �
: (9)

The convexity of ΓME(λ) implies the uniqueness of the ME solution in terms of λ1, λ2, …, λM. The distribution of X in
terms of pME

i , i = 1, 2, …, N, is obtained by substituting λ1, λ2, …, λM into Equation 7. It is also noted that it is always
possible to determine the ME discrete distribution for the generalized moment problem, see Alibrandi and Ricciardi15

and Tagliani.20
2.3 | ME probability distribution of a continuous random variable

Let us consider a continuous‐valued random variable X with PDF fX (x) whose available information given by the
constraints are Gk ≡ E[gk] = ∫ gk(x)fX(x)dx, and the normalization condition ∫fX(x)dx = 1. In such case, the ME principle
gives rise to

max
f

H fð Þ
∫f X xð Þdx ¼ 1

∫gk xð Þf X xð Þdx ¼ Gk; k ¼ 1; 2;…;M

8>><>>: ; (10)

where H(f) is the differential entropy defined in Equation 2, while the Lagrangian is

Lf f ; λð Þ ¼ H fð Þ− λ0−1ð Þ ∫f X xð Þdx−1ð Þ− ∑
M

k¼1
λk ∫gk xð Þf X xð Þdx−Gkð Þ: (11)

The ME PDF is

f ME xð Þ ¼ N0 λ1; λ2;…; λMð Þexp − ∑
M

k¼1
λkgk xð Þ

� �
; (12)

where λ1, λ2, …, λM are the Lagrange multipliers, while N0 = exp (−λ0) is the normalization constant, with

λ0 λ1; λ2;…; λMð Þ ¼ log ∫exp − ∑
M

k¼1
λkgk xð Þ

� �
dx

� �
: (13)

It can be shown that a correspondence one to one exists between the averages G1, G2, …, GM and the Lagrange
multipliers λ1, λ2, …, λM. Therefore, Equation 12 can be considered as a family of distributions of the ME fME(x;λ) of
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parameters λ. By substituting Equation 12 into H (f), it is seen that λ1, λ2, …, λM can be determined as a solution of the
following convex unconstrained optimization problem

λ� ¼
max
λ

H fME x; λð Þ½ �
∫gk xð Þf ME x; λð Þdx ¼ Gk

(
≡ min

λ
ΓME λð Þ; (14)

where the functional ΓME(λ1, λ2,…, λM) is defined by Equation 8, with λ0 given by Equation 13 for the continuous case.
As discussed above, the differential entropy H( f ) is not a correct information measure for continuous random

variables. However, it can be successfully adopted to determine the ME PDF, defined by Equation 12. To show this,
the goal is to determine, inside the family of distributions fME(x;λ) drawn by Equation 12, the closest distribution
fME(x;λ*) to fX(x) in terms of KL divergence. By assuming f1(x) ≡ fX(x) and f2(x) ≡ fME(x;λ), Equation 4 gives

min
λ

D f X xð Þ; f ME x; λð Þ½ � ¼ min
λ

H f X xð Þ; f ME x; λð Þ½ � ¼ min
λ

ΓME λð Þ; (15)

which provides the same optimal distribution of Equation 14.
2.4 | Discussions on ME distribution with power moments

Typically, the constraints representing the available information are expressed through the population power moments,
ie, gk(x) = xk and Gk = E[Xk] ≡ μk. In such case, the ME distribution is

f ME xð Þ ¼ N0exp − ∑
M

k¼1
λkxk

� �
¼ N0exp −λ1x−λ2x2−…−λMxM

� 	
: (16)

The main problem with this choice is that an accurate description of the tails of the distribution requires a high num-
ber M of moments. But the moment problem is ill posed, so that, when M is high, numerical instability can arise inside
the optimization algorithm of ME. Thus, only lower‐order moments are typically considered, which may lead to inaccu-
rate modeling of the tails of a broad family of distributions. As an example, consider the ME PDF for M = 4, which is
fME (x) = N0 exp (−λ1x − λ2x

2 − λ3x
3 − λ4x

4). For the sake of clarity, let us assume that the target distribution is symmetric
with respect to the origin, so that λ1 = λ3 = 0 and fME(x) = N0 exp (−λ2x

2 − λ4x
4). In such cases, when |x| → ∞, then

fME (x) decays like exp (−λ4x
4). This implies that (1) λ4 ≥ 0 so that fME (x) → 0 when |x| → ∞ and (2) since λ4 ≥ 0, fME (x)

decays at least as fast as the Gaussian density. This makes the ME PDF of little use for softening behaviors, which are
common cases of interest in structural engineering. For further details and numerical examples, see Winterstein and
Mackenzie.10

In practical applications, we do not have the true moments μk, but samples of data x 1ð Þ; x 2ð Þ;…; x nsð Þ
 �
, from which the

sample moments mk are derived. Typically, we assume that they coincide, that is,

μk ≅ mk ¼ 1
ns

∑
ns

j¼1
x jð Þ
h ik

: (17)

However, see Baker,21 this assumption raises some questions: (1) the entropy is a measure of the information, and it
should be dependent on the number ns of sample data, and (2) an accurate description of the tails requires higher‐order
moments (k > 2). However, in practice, the sample size is usually small, and the estimates of the higher‐order sample
moments provide large statistical errors. Summarizing, from a given sample of data, if only lower‐order sample moments
are considered, there is inadequate information to model the tails of the distribution. Conversely, if higher‐order sample
moments are determined, these can represent unreliable estimates of the corresponding population moments. In both
cases, the ME estimates of the tails of the target distribution may be significantly biased.
2.5 | ME distribution with fractional moments of positive continuous‐valued random
variables

The fractional moment of a positive continuous‐valued random variable is defined as

μα ¼ E Xα½ � ¼ ∫xαf X xð Þdx; (18)
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with α is a real number.11-13 By developing a Taylor series expansion of xα around a real constant c, the fractional
moments (Equation 18) can be defined as

E Xα½ � ¼ ∑
∞

i¼0
∑
i

k¼0
−1ð Þi−k α

i

� �
i

k

� �
cα−kE Xk

� 
; (19)

which shows that only few fractional moments can give the same information of several power moments. It is therefore
expected that the adoption ofM fractional moments as constraints may give more detailed information about the tails of
the distribution compared to the use of M power moments.

Moreover, the fractional moments guarantee good performance from a numerical point of view. For a given sample
of ns data, the derived sample fractional moments are

mα ≅ μα ¼ 1
ns

∑
ns

j¼1
x jð Þ
h iα

: (20)

This implies that the fractional moments can be defined for low values of α (eg, α ≤ 2), so that their estimates can be
reliable even in the presence of samples of small size. Moreover, in view of Equation 19, they may give information over
the tails of the distribution. The ME distribution is given by Equations 12 and 13, by setting gk xð Þ ¼ xαk , that is,

f ME x; λ;αð Þ ¼ N0exp − ∑
M

k¼1
λkxαk

� �
¼ N0exp −λ1xα1−λ2xα2−…−λMxαMð Þ: (21)

By comparing Equation 21 with Equation 16, it is seen that the ME PDF with fractional moments is representative of
a broader family of distributions with respect to the case where only power moments are adopted, while they coincide
only when αk = k, k = 1, 2, …, M.

In the existing literature, the evaluation of the parameters λ and α is obtained by minimizing the KL divergence
between the target PDF fX (x) and fME(x;λ,α), as described above, Equation 15. It follows

min
λ;α

D f X xð Þ; f ME x; λ; αð Þ½ � ¼ min
λ;α

H f X xð Þ; f ME x; λ; αð Þ½ � ¼ min
λ;α

ΓME
α λ1; λ2;…; λM ; α1; α2;…; αMð Þ: (22)

In Equation 22, the functional ΓME
α λ;αð Þ is defined by

ΓME
α λ;αð Þ ¼ λ0 λ;αð Þ þ ∑

M

k¼1
λkμαk ; (23)

where μαk is the kth fractional moment while

λ0 λ; αð Þ ¼ log ∫exp − ∑
M

k¼1
λkxαk

� �
dx

� �
: (24)

It is noted that while ΓME(λ) is a convex functional in λ, the convexity of ΓME
α λ; αð Þ is not guaranteed. This implies

that the initial choice of the parameters α inside the optimization procedure of Equation 22 may significantly affect
the ME distribution. Consequently, the increased flexibility of fME(x;λ,α) has the following shortcomings: (1) the frac-
tional moments can be applied only to positive continuous‐valued random variables and (2) the optimization procedure
to determine the ME PDF is not well defined.
3 | MOMENT ‐BASED KD ESTIMATION

3.1 | The KDR

Let us consider a random variable X, whose PDF is fX(x) with support Ω. Assume that the event [E] ≡ [X ∈ Ω] is divided

into n events E1, E2, …, EN mutually exclusive and collectively exhaustive, ie, ⋃N
i¼1Ei ¼ E, and Ei ∩ Ej = ∅ for i ≠ j.

Let [A] ≡ [X ≤ x] and [Ei] ≡ [xi − 1 ≤ X ≤ xi] with probability pi, by applying the total probability theorem; the probability
of the event A is as follows:
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Prob X ≤ x½ � ¼ ∑
N

i¼1
Prob X ≤ xjxi−1 ≤ X ≤ xi½ �Prob xi−1 ≤ X ≤ xi½ �: (25)

The CDF, FX (x), of X and corresponding PDF, fX (x), are thus obtained as follows:

FX xð Þ ¼ ∑
N

i¼1
piFX jEi

xjEið Þ; (26)

f X xð Þ ¼ ∑
N

i¼1
pi f XjEi

xjEið Þ ≅ ∑
N

i¼1
pi f

K
X x; xi; hð Þ; (27)

where f XjEi
xjEið Þ is the conditional PDF of X, given Ei. By approximating the target conditional PDFs with suitable KD

functions (KDFs), f KX x; xi; hð Þ ≅ f X jEi
xjEið Þ, the KDR of the target PDF is obtained, fKD(x;p,ϑ) ≅ fX (x). In fKD(x;p,ϑ), p is

an N‐vector collecting the probabilities p1, p2, …, pN, while ϑ is another N‐vector collecting the parameters of the N KDFs.
Each KDF is identified by its location parameter xi and bandwidth h, which gives the spreading of the KDF around its
location xi. The main feature of the KDR is its extreme flexibility, see Athanassoulis and Gavriliadis,14 since the type
of KDF and its support can be chosen in accordance to the problem under consideration, ie, the centers xi can be adap-
tively distributed and the bandwidth may also be variable, ie, h = hi. This implies that the KDR (Equation 27) has 2N + 1
free parameters: the N probabilities p1, p2, …, pN, the N centers x1, x2, …, xN, and the bandwidth h. The properties of the
KDFs are described in detail in Athanassoulis and Gavriliadis14 and Alibrandi and Ricciardi.15 Here, it is underlined that
when h → 0, the KDF converges toward a Dirac delta function centered at xi, ie,

lim
h→0

f KX x; xi; hð Þ ¼ δ x−xið Þ: (28)

Thus, when h → 0, the KDR of Equation 27 gives rise to the N‐point distribution

f X xð Þ ≅ f KD x;p; ϑð Þ ¼ ∑
N

i¼1
pi δ x−xið Þ: (29)

It follows that the KDR may approximate the target PDF fX(x) as close as required. It is noted that the representation
of Equation 29 has 2N free parameters represented by the N ascissas xi and the N probabilities pi.

Multiplying both sides of Equation 27 by a set of linearly independent functions gk(x), k = 0, 1, …, M, with g0(x) = 1,
G0 = 1 and integrating over the support, we obtain the following relationship between the parameters and the general-
ized moments of the target PDF:

Mp ¼ μ; (30)

where p is a vector of order N collecting the probabilities pi while M and μ are defined component‐wise as follows:

Mki ¼ μKk;i ¼ ∫gk xð Þf KX x; xi; hð Þdx
μk ¼ ∫gk xð Þf X xð Þdx ¼ E gk Xð Þ½ � ; (31)

where Mki are generalized moments of order k of the ith KDF f KX x; xi; hð Þ, ie, M = [Mki] is a matrix of dimensions
(M + 1) × N and μ is a vector of order M + 1 collecting the assigned generalized moments.
3.2 | Choice of the KDFs

In the KDR (see Equation 27), a key issue is represented by the choice of the basis KDF f KX x; xi; hð Þ. The support of the
target PDF fX(x) can be used as a driving factor in the choice. In fact, there is no physical reason to use a Gaussian
kernel (which is defined over the whole real axis) to reconstruct a PDF that is known to be defined over a finite interval
Ω ≡ [a, b]. It is noted that the moments of the Gaussian distribution appearing in the matrix M of Equations 30 and 31
are evaluated in a support (−∞,∞) different from the original finite support for which the moments μ0, μ1, …, μM are
assigned. Likewise, there is no reason to adopt a uniformly distributed kernel when the support of fX (x) is unbounded
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or semibounded. In this case, fKD(x) would provide a truncated distribution, which is significantly different from the
target PDF, especially at the tails. Starting from this last consideration, a further driving factor in choosing the KDF
is represented from the assumed tail behavior of fX (x). If the latter is sub‐Gaussian, then the Gaussian kernel may
be adopted. Conversely, if it is super‐Gaussian, then it may be preferable to choose kernel with fat tail, eg, Laplace,
lognormal, or Weibull.

For the sake of illustration, if the target distribution has unbounded support Ω ≡ (−∞,∞), a possible kernel is

Gaussian f KX x; xi; hð Þ≡ f GX x; xi; σð Þ whose parameters are the mean value coinciding with the center xi and the standard
deviation σ coinciding with the bandwidth h, ie,

f KD xð Þ ¼ ∑
N

i¼1
pi f

G
X x; xi; σð Þ ¼ ∑

N

i¼1
pi

1

σ
ffiffiffiffiffiffi
2π

p exp −
1
2

x−xi
σ

� �2� �
: (32)

When the support is bounded, ie, Ω ≡ [a, b], a typical choice for the KDF is the beta distribution

f KX x; xi; hð Þ≡ f BX x; δi; βið Þ of parameters δi and βi, ie,

f KD xð Þ ¼ ∑
N

i¼1
pi f

B
X x; δi; βið Þ ¼ ∑

N

i¼1
pi
Γ δi þ βið Þ
Γ δið ÞΓ βið Þ xδi−1 1−xð Þβi−1; (33)

where

δi xi; hð Þ ¼ x2i−x
3
i−h

2xi
h2

; βi xi; hð Þ ¼ 1−xið Þ xi−x2i−h
2� 	

h2
: (34)

Finally, when the support is semibounded Ω ≡ [0,∞), the lognormal distribution f KX x; xi; hð Þ≡ f LNX x; λi; ζ ið Þ of
parameters λi and ζi may be adopted,15 ie,

f KD xð Þ ¼ ∑
N

i¼1
pi f

LN
X x; λi; ζ ið Þ ¼ ∑

N

i¼1
pi

1

xζ i
ffiffiffiffiffiffi
2π

p exp −
1
2

ln xð Þ−λi
ζ i

� �2
( )

; (35)

where

λi xi; hð Þ ¼ ln
x2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2i þ h2
q

0B@
1CA; ζ 2i xi; hð Þ ¼ ln 1þ h2

x2i

� �� �
(36)

In Yuan and Fox,22 a gamma distribution is used as a kernel in the presence of semibounded support. It is here
underlined that, provided that the number N of KDFs is high enough, the reconstruction of fX(x) in its central part is
not significantly affected by the choice of the specific KDF (eg, lognormal, gamma, or Weibull). Conversely, differences
may arise in the tails of the distributions if the number M of moments is low, as it is typically the case.
3.3 | Existing KD methods

Kernel density functions represent a key tool within the framework of nonparametric statistical estimation.23,24 Kernel
density estimation is a data smoothing problem and, starting from the knowledge of a finite data sample, provides infer-
ences about the population. In the KD estimation, it is assumed that pi = 1/N in Equation 27, so only the free parameters
h has to be determined. It is known that in a typical sample‐based KD reconstruction, the choice of the KD does not
affect the quality of the estimate provided that the sample set is large enough. In contrast, the choice of an inappropriate
value of the bandwidth can lead to an oversmoothed or undersmoothed estimated PDF. Cross‐validation may be used to
estimate h. The main shortcoming of the classical KD estimation is its strong dependence on the sample data. Conse-
quently, it does not have good prediction properties over the unseen data, and the reconstruction of the tails is typically
poor unless a very large dataset is available.

Moment‐based KD methods are used in stochastic dynamic analysis,25-27 in turbulence and multiphase fluid
mechanics. To the best of the authors' knowledge, the first moment‐based KD method based on the (population)
moments has been presented in Athanassoulis and Gavriliadis14 and called KD element method (KDEM) where the
Hausdorff moment problem is studied with the random variable X having a bounded support Ω ≡ [a, b]. In the KDEM,
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the free parameters are the N probabilities p1, p2, …, pN, which are determined through a minimization of the L2‐norm

Mp−μk k22 (see Equation 30), under the constraints p ≥ 0 and the exact reproduction of the lowest‐order moments. In a
least squares minimization approach, it is required that M + 1 > N and the authors in previous study14 find that
M = 10 − 20 moments are sufficient for an accurate reconstruction. They also show that the maximum number of
(population) moments is constrained by the computer arithmetic, namely, M ≤ 10 and M ≤ 20 in single and double
precision, respectively. An important shortcoming of the KDEM is that only few lower‐order moments are exactly
reproduced by the KD PDF.

In some applications, PDFs need to be reconstructed and integrated repeatedly, so that there is interest in minimizing
the number of points required for the reconstruction. To this aim, a widely used closure for the moment transport
equation is the quadrature method of moments (QMOM).28 In the QMOM, the representation in Equation 29 is adopted,
and the 2N free parameters pi and xi are described by a set of M = 2N − 1 moments μ1, μ2, …, μ2N − 1 (in addition to the
zeroth‐order moment μ0 = 1).29 The moment‐inversion algorithm used in the QMOM is accurate for N ≤ 10 (and
M ≤ 19). To capture the response at the boundary, a continuous distribution is needed. To this aim, in Chalons et al30

and Yuan et al,31 the extended QMOM (EQMOM) is proposed, where the representation in Equation 27 is adopted. In
such case, the 2N + 1 free parameters (pi, xi where i = 1, 2, …, N and h) are determined from the knowledge of
M = 2N moments. To minimize the numerical difficulties for moment inversion, the adaptive Wheeler algorithm is
used.32,33 A reasonable accuracy is obtained only for N ≤ 5 − 10 (andM ≤ 10 − 20) where the EQMOM outperforms both
QMOM and KDEM, and numerical examples have demonstrated its good performance in several applications. However,
the focus of the EQMOM is devoted mostly to the prediction of the moment up to order 2N + 1, and not to the recon-
struction of the target PDF.

In this paper, following Jaynes,18 we focus on the evaluation of the less “subjective” reconstruction of the distribution of
a random variable, including its tails, from the knowledge of a sample data. This cannot be obtained through the existing
KDmethods, because the sample‐based KD does not have good prediction capabilities over the unseen data, while with the
moment‐based KD methods, the evaluation of the tails is affected by the choice of the KDF. Moreover, as discussed above,
the moment‐based KD methods assume that the first M = 10 − 20 population moments are known. Unfortunately, with
most sample data, only the first M = 2 − 4 sample moments can be determined with reasonable accuracy.
4 | KDME METHOD WITH GENERALIZED MOMENTS

The support of the random variable X can be bounded,Ω ≡ [a, b], semibounded,Ω≡ [0,∞), or unbounded,Ω≡ (−∞,∞).

For the KDR, an important issue stems from the selection of the window of analysis bΩx ⊆Ω, to which the centers xi of the

KDFs belong. If X has Ω ≡ [a, b], then clearly, bΩx ≡Ω. Conversely, if X has semibounded or unbounded support, thenbΩx ≡ xmin; xmax½ � is selected and the approximated PDF fKD(x;p) is evaluated. To satisfy the normalization condition,
the target PDF should be zero toward infinity, ie, lim

x→∞
f X xð Þ ¼ 0 and lim

x→±∞
f X xð Þ ¼ 0 for variables with semibounded

or unbounded support, respectively. Consequently, at the boundary of bΩx , fKD(x;p) has to be lower than a chosen

tolerance level ε > 0. If this is not the case, the window of analysis bΩx is enlarged as much as needed. In this way, the

problem is reduced to the estimation of the distribution of a random variable over the bounded support bΩx .
A coordinate transformation, z = (x − xmin)/(xmax − xmin), is developed where Z is a continuous‐valued random

variable whose support is Ωz ≡ [0, 1]. The KDR described above is applied to Z to determine its PDF fZ(z). The location
parameters zi, i = 1, 2, …, N, are N points belonging to the domain, and they can be chosen in several different manners.
For simplicity, a constant step Δz ≡ Δzi = zi + 1 − zi, i = 1, 2, …, N − 1, is chosen. Similarly, we choose h = ρΔx with
0 < ρ < Δx, such that when N→∞, h→ 0. It is noted that a reduced number of KDFs (eg, N = 5 − 10) implicitly assume
the shape of the KD PDF, especially with reference to the tails. To obtain the most objective distribution given the

available information, N is chosen as a very high number (eg, N ≥ 100) so that f KZ z; zi; hð Þ→δ z−zið Þ and the
representation in Equation 29 may be assumed valid. The KDR provides the generalized constraints Mp = μ, see
Equation 30, where p is a vector of order N collecting the probabilities pi = Prob[zi − 1 ≤ Z ≤ zi] ≡ Prob[xi − 1 ≤ X ≤ xi]
while M and μ are defined component‐wise as follows:

Mki ¼ μKk;i ¼ ∫Ωz
gk zð Þδ x−xið Þdz ¼ gk zið Þ

μk ¼ ∫Ωz
gk zð Þf Z zð Þdz ¼ E gk Zð Þ½ �:

(37)
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Let us consider the discrete random variable bZ defined in Ωz ≡ [0, 1] with probability distribution given by pi
evaluated at the centers zi, i = 1, 2, …, N, and ∑n

i¼1pi ¼ 1. The generalized moments of bZ are given by

E gkð Þ≡μk ¼ ∑n
i¼1gk zið Þpi. The ME probability distribution of bZ is

pME
i λ1; λ2;…; λMð Þ ¼ N0 λ1; λ2;…; λMð Þexp − ∑

M

k¼1
λkgk zið Þ

� �
; i ¼ 1;…;N: (38)

This ME probability distribution is given by the solution of

max
p

H pð Þ

∑
N

i¼1
pi ¼ 1

∑
N

i¼1
gk zið Þpi ¼ μk; k ¼ 1; 2;…;M

8>>>>>>><>>>>>>>:
≡ min

λ
ΓME λð Þ ¼ λ0 λð Þ þ ∑

M

k¼1
λkμk

�
: (39)

OncepME
i λð Þ are determined, the reconstruction of the target PDF fZ(z) is developed through the KDME PDF fKDME(z)

(Equation 27). Since N ≥ 100 and only the region inside the bounded domainΩz is considered, the choice of the KDF (eg,
Gaussian, lognormal, Weibull, or beta) does not significantly affect the approximation.
Algorithm 1. Let X be a random variable with support Ω; we seek to recover its unknown PDF fX(x).

1. Choose a support bΩx ⊆Ω, such that outside bΩx ≡ xmin; xmax½ �, the values of fX(x) may be negligible.
2. Develop the coordinate transformation z = (x − xmin)/(xmax − xmin), by introducing the random variable Z

defined in Ωz ≡ [0, 1] where μ1, μ2, …, μM are the first M generalized moments of Z.
3. Apply the KDR to the random variable Z. In all the numerical examples, the considered number of kernel

densities is high, N ≥ 100, such that Equation 29 for the KDR is considered valid.
4. Thus, a discrete random variable bZ is defined in Ωz, whose probability distribution is characterized by the

probabilities pi, i = 1, 2, …, N, determined from the ME solution pME
i ¼ pME

i λ1; λ2;…; λMð Þ (Equation 38)
by maximizing the Shannon's entropy subject to the available information or, which is the same, by minimiz-
ing the free convex functional ΓME(λ). It is noted that, since bZ is a discrete‐valued random variable, the
minimization of ΓME(λ) does not require the numerical evaluation of complicated integrals.

5. Choose the KDF that best fits the target PDF fz(z) (Equations 32‐36). From the knowledge of the probabilities
pME
i ≅ pi, determine the KDME PDF fKDME(z) ≅ fZ(z).

6. Obtain KDME approximation of fX(x) by the inverse coordinate transformation from z to x.
7. Check the goodness of the window of analysis bΩx, and, if necessary, enlarge/reduce it and go back to step 2;

otherwise, stop.
5 | GKDMEM WITH FRACTIONAL MOMENTS

In this section, the GKDMEM is applied by choosing a suitable class of fractional moments as generalized ones. The frac-

tional moment is defined as μk ¼ E Zαk½ �≡E bZαk
h i

, where αk is a real number, including integer and fractional numbers.

The corresponding generalized functions becomesgk zð Þ ¼ zαk . If the powers are integer numbers, then g1(z) = z, g2(z) = z2,
…, gM(z) = zM, and the functions gk(z) are linearly independent, which is the classical approach with power moments. As
a generalization to the fractional moments, we choose αk = kΔα, such that the functions g1(z) = zΔα, g2(z) = z2Δα, …,
gM(z) = zMΔα are also linearly independent. This mathematical structure has some important properties.

First, it is shown that if an infinite sequence of classical power moments μk ¼ E bZk
h i

or of fractional moments

μk ¼ E bZαk
h i

¼ E bZkΔα
h i

determines pi uniquely, then the ME approximation pME
i , constrained by the same moment

sequence μkf gMk¼0, converges in entropy to pi, ie, for M → ∞, then H pME
i

� 
→H pi½ �.20,34-36 Second, the convergence in

entropy entails convergence in the L1‐norm and thus in distribution, ie, pME
i →pi. In view of Equation 29, for N → ∞,
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the convergence in pi implies the convergence of Z and consequently of X, fKDME(x) → fX (x). Third, for M finite, the
existence and uniqueness of the ME solution pME

i λ1; λ2;…; λMð Þ is guaranteed, and from Equation 38 by setting
gk zð Þ ¼ zαk , with α0 = 0, we obtain the following:

pME
i λ;αð Þ ¼ exp −λ0− ∑

M

k¼1
λkz

αk
i

� �
¼ exp − ∑

M

k¼0
λkz

αk
i

� �
; i ¼ 1;…;N: (40)

From a practical point of view, the number of moments is limited, for both cases, fractional and integers,37 because of
numerical instabilities. Thus, the choices of how many and which powers to consider are important. Let us consider now
the KL divergence between the true but unknown distribution pi and the ME solution pME

i , defined as follows:

D p;pME
� 	 ¼ ∑

N

i¼1
pi log

pi
pME
i

¼ H pME
� 

−H p½ �≥ 0: (41)

In Equation 41, the definition of Shannon's entropy (Equation 1) is used. In view of Equation 40, pME = pME(λ,α).
Thus, the minimum divergence between the 2 distributions is given by the distribution of ME pME(λ*,α*), determined
from a nested optimization procedure:

min
p;pME

D p;pME
� 	 ¼ min

λ;α
H pME λ;αð Þ�  ¼ min

α1;…;αM
min

λ1;…;λM
ΓME

α
λ;αð Þ

� �
; (42)

where

ΓME
α λ1;…; λM ; α1;…; αMð Þ ¼ log ∑

N

i¼1
exp − ∑

M

k¼1
λkz

αk
i

� �� �
þ ∑

M

k¼1
λkE Zαk½ �: (43)

This formulation, originally proposed in Novi Inverardi and Tagliani,11 is involved because of its nonuniqueness of
the solution with respect to α, ie, different initial conditions of α may give different ME solutions. In this paper, starting
from considerations in previous studies,12,38,39 we present an effective computational procedure for a unique ME solution
given sample data.

Using the definition in Equation 40 and integrating by parts the fractional moments, the internal optimization pro-
cedure of Equation 42 may be substituted by the solution of a simple linear system of M equations in the M unknowns
λ1, λ2, …, λM:

Θ αð Þλ ¼ ρ αð Þ; (44)

where

Θkj αð Þ ¼ αkE Zαkþαj½ �; ρj αð Þ ¼ αj þ 1
� 	

E Zαj½ �; (45)

with k = 1, 2, …, M and j = 0, 1, …, M − 1. Thus, for given values of α1, α2, …, αM, the Lagrange multipliers λ1, λ2, …, λM
are given by the solution of the linear system in Equations 44 and 45.

A crucial point in the definition of gk zð Þ ¼ zαk ¼ zkΔα is the choice of αmax. It is underlined once again that when
N → ∞, in view of Equation 29, f KDME zið Þ ¼ pME

i . The approach presented here implies that the GKDMEM with
fractional moments should give the exact solution for the distributions that may be expressed as an exponential of
polynomials with real powers. If, for example, the target PDF fX(x) is Gaussian, then the KDME approach should give
fKDME(z) = N0 exp (−λ1z − λ2z

2). If it is reasonable to assume that the tail of fX(x) is fatter than Gaussian, then one
may choose αmax = 2; otherwise, αmax = 4 can be selected. Thus, a simple choice is to define a sequence of Q‐powers
αq = qΔα, with q = 1, 2, . . , Q and Q ≥ M such that the sequence also contains integer numbers. Let us consider the
collection QM of M real powers taken from the extended set α1, α2, …, αQ. The cardinality of this set is

NQ;M ¼ Q

M

� �
¼ Q!

M! Q−Mð Þ!. For illustration, assume M = 2 and Q = 4, with α1 = 0.5, α2 = 1.0, α3 = 1.5, α4 = 2.0. In

this case,Q2 ≡
0:5

1:0

� �
;

0:5

1:5

� �
;

0:5

2:0

� �
;

1:0

1:5

� �
;

1:0

2:0

� �
;

1:5

2:0

� �� �
withN4;2 ¼

4

2

� �
¼ 6. Define α(r) as the rth element

of the collection QM, r = 1, 2, …, NQ, M. From Equations 44 and 45, λ(r) = λ(α(r)) is determined, and in turn from
Equations 40 and 1, one obtains
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H rð Þ ¼ H pME α rð Þ
� �h i

≡H α rð Þ
h i

¼ ∑
M

k¼0
λk α rð Þ
� �

E Zα rð Þ
k

h i
: (46)

Therefore, the nested optimization procedure (Equations 42 and 43) is reduced to

HQ;M ¼ min
α

H pME αð Þ�  ¼ min H α 1ð Þ
h i

;…;H α rð Þ
h in o

; r ¼ 1;…;NQ;M : (47)

This reduces to determining the solution of NQ, M linear systems in M unknowns. It is noted that the presented
procedure is effective and robust, but it gives the optimal ME solution within the class of fractional powers belonging
to the collection QM. However, this is not a limitation, because it is enough to reduce Δα to obtain an extended class

Q′

M⊇QM whose solution of Equation 47 is H ′

Q;M ≤HQ;M .
Algorithm 2. The GKDMEM with fractional moments is summarized as the following algorithm:

1. For a given number M of fractional moments, choose Δα and αmax, to define a set of Q fractional powers α1,
α2, …, αQ, with Q ≥ M. A good choice is αmax = 2 or 4, while Δα should be selected such that the fractional
powers also include the integer ones.

2. Construct the collection QM of M real powers taken from the extended set α1, α2, …, αQ.
3. Select the rth element α(r) of the collection QM, r = 1, 2, …, NQ, M.
4. The solution of the linear system in Equation 44 gives the Lagrange multipliers λ(r) = λ(α(r)).
5. Determine the rth entropy H(r) ≡ H[α(r)] through Equation 46.
6. Repeat steps 3 to 5 for all the NQ, M elements of the collection QM.
7. The ME solution is the one minimizing the value of H(r) (Equation 47).
6 | KDMEM FOR GIVEN SAMPLE DATA

In practical problems, a sample of data is available, where the known quantities are not the population moments μk, but
the sample momentsmk. This provides further challenges to the application of the ME, as discussed above. To this aim, it
is convenient to interpret the KDME PDF (Equations 27 and 32‐36) as a probabilistic model, whose parameters for frac-
tional moments are obtained from α. The KL divergence between the target PDF fZ(z) and its KDME approximation
fKDME(z,α) is as follows:

D f Z ; f KDMEð Þ ¼ ∫Ωz
f Z zð Þlog f Z zð Þ

f KDME z;αð Þ
� �

dz ¼ C−
1
ns

∑
ns

j¼1
log f KDME zj;α

� 	� 
; (48)

where C ¼ ∫Ωz
f Z log f Z dz, while ns is the number of sample data. The minimum divergence between the 2 distribu-

tions coincides with the maximum logarithmic likelihood of f KDME z;αð Þ ¼ ∑N
i¼1pi αð Þf KZ z; xi; hð Þ. The concept behind

the maximum likelihood estimation is to estimate the parameters of the distribution that maximize the probability of
occurrence of the observed data. However, the maximum likelihood estimation produces biased estimates of the true
parameters. Thus, Akaike16 suggested to maximize an unbiased estimation of the likelihood function, ie,

L M;αð Þ ¼ 1
ns

∑
ns

j¼1
log ∑

N

i¼1
pi αð Þf KZ zj; xi; h

� 	� �
−
M
ns
; (49)

where the “bias” term M/ns is a penalty term discouraging the model complexity. Therefore, for a given M, the optimal
KDME PDF is as follows:

D Mð Þ ¼ min
α

D f Z; f KDMEð Þ ¼ max
α

L M;αð Þ: (50)
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In this way, an optimal divergence D(M) can be determined from Equation 50 while the optimal number of moments
for the given sample data minimizes D(M). Thus, in the presence of a sample of size ns, the choice of the optimal number
of moments is obtained from the following algorithm.
Algorithm 3.

1. For a given number M of fractional moments, choose Δα and αmax, to define a set of Q fractional powers α1,
α2, …, αQ, with Q ≥ M.

2. Construct the collection QM of M real powers taken from the extended set α1, α2, …, αQ where

a. The rth element α(r) of the collection QM, r = 1, 2, …, NQ, M, is selected;
b. The solution of the linear system in Equation 44 gives the Lagrange multipliers λ(r) = λ(α(r));
c. The rth KDME distribution pi rð Þ ≡ pME

i α rð Þ� 
is determined through Equation 40;

d. The rth unbiased likelihood L(r)(M) ≡ L[M,α(r)] is determined through Equation 49;
e. Repeat steps 2a to 2d for all the NQ, M elements of the collection QM;
f. The optimal KDME PDF for fixed M maximizes L(r)(M) (Equation 50);
g. The divergence D(M) (Equation 50) between the target PDF fZ(z) and the optimal KDME PDF is determined. It

is noted that the coefficients αME giving rise to the minimum entropy H[pME(α)] of Equation 47 represent the
optimal parameters for the divergence D(M) of Equation 50.
3. Repeat steps 1 to 2 for different values of M.
4. The optimal KDME PDF for the given sample minimizes D(M).
7 | CREDIBLE BOUNDS FOR GIVEN SAMPLE DATA

In the presence of a given sample data, especially if it is based on a limited amount of data, it is of interest to investigate
the error incurred by the KDME PDF. In the presence of one sample of data of small size, an effective tool is represented
by the bootstrap resampling.40 Assume a known original sample of ns data bz ¼ z1; z2; … ; znsf g, drawn from an

unknown cumulative distribution FZ(z). Determine the empirical estimate bFZ zð Þ of FZ(z) from the sample bz. bFZ zð Þ is
defined as the discrete distribution with probability 1/ns on each value zi. A bootstrap sample bzB is a random sample

of size ns drawn from bFZ zð Þ with replacement. The elements of bzB are the same as those of the original data set, but
repetitions may occur, ie, in bzB, some elements may appear only once, some may appear 2 or more times, and other
may not appear. For illustration, if the original sample is bz≡ 1; 2; 5; 8; 4f g; some possible bootstrap samples arebz 1ð Þ
B ≡ 8; 2; 2; 1; 4f g; z 2ð Þ

B ≡ 5; 5; 1; 4; 4f g; and so on. Following Algorithm 3 described above, for the sth bootstrap

sample bz sð Þ
B , s = 1, 2, … , S, the KDME PDF is evaluated as f KDME z;α sð Þ

h i
¼ ∑

N

i¼1
p sð Þ
i αð Þf KZ z; xi; hð Þ, where

p sð Þ
i αð Þ ¼ pi α sð Þ� 

. In this way, S values of pi are determined and it is possible to define for each pi the corresponding
bootstrap distribution. Let us define pLB(α) and pUB(α) as credible lower and upper bounds, obtained by respectively con-
sidering 2 percentiles qLB and qUB of the boostrap distributions of pi. Accordingly, the credible bounds of pi determine the
credible bounds of the KDME PDF as follows:

∑
N

i¼1
pi;LB αð Þ f KZ z; xi; hð Þ≤ ∑

N

i¼1
pi αð Þ f KZ z; xi; hð Þ≤ ∑

N

i¼1
pi;UB αð Þ f KZ z; xi; hð Þ: (51)

8 | NUMERICAL APPLICATIONS

8.1 | Duffing oscillator

Consider a Duffing oscillator defined by the following nonlinear differential equation:

m€X tð Þ þ c _X tð Þ þ k aX tð Þ þ ϵX3 tð Þ�  ¼ W tð Þ; (52)
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where m = 1000 kg, c = 100(2π) N. s/m , and k = 100(2π)2 N/m are the mass, damping, and stiffness coefficients,
corresponding to a natural frequency ω0 = (2π) rad/s and damping ratio ζ0 = 5%. The coefficients of linear and cubic
nonlinearity are both taken as a (different dimensionless values) and ϵ = 10 m−2. The stochastic input is defined as a
white noise process W(t) of intensity SW. The PDF of the response in a stationary state is known in a closed form.41 After
transformation toward the z space, the target PDF has the following form:

f Z zð Þ ¼ N0exp −δ1z−δ2z2−δ3z3−δ4z4
� 	

; (53)

where N0 is a normalization constant. The above form is used as a benchmark to compare with the approximation given
by the GKDMEM. In the following examples, the parameters of the fractional moments, as discussed above, are αmax = 4,

with Δα = 0.25, ie, Q = 16, and M = 1, 2, 3, 4 where it is necessary to respectively solve
16

1

� �
¼ 16,

16

2

� �
¼ 120,

16

3

� �
¼ 560, and

16

4

� �
¼ 1820 linear systems in the differentM unknowns, with a total of 2516 linear systems of small

size.
8.1.1 | Population moments

As a first example, we choose a = 1 and SW = 1m2/s3. In this theoretical example, the fractional moments are evaluated

from the knowledge of the target PDF, known in closed form. A window of analysis bΩx ≡ −1; 1½ � is chosen. The ME
solution (see Equation 40) has the powers α1 = 1, α2 = 2, α3 = 3, and α4 = 4, which implies

pME
i ¼ N0exp −λ1zi−λ2z2i−λ3z

3
i−λ4z

4
i

� 	
; i ¼ 1;…;N : (54)

This has the same mathematical structure of the exact PDF (Equation 53). In Figure 1, the target distribution and the
KDME approximation are shown together with the Gaussian distribution to underline the degree of non‐Gaussianity of
the target distribution. In Figure 1A, the PDFs f are represented, while in Figure 1B, we show the corresponding prob-
ability of exceeding P, which is equal to the complementary CDF, ie, F = 1 − P. As expected, the GKDMEM gives the
exact solution because the classical ME distribution with the first 4 power moments gives the exact PDF. It is noted that
(1) the GKDMEM only requires the solution of a set of linear system of equations without the need for any numerical
evaluation of integrals, (2) in the proposed procedure, the fractional moments converge to the integer ones to give the
exact solution, and (3) the classical ME with fractional moments cannot be used for distributions with unbounded
domains.

To show the flexibility of the GKDME approach, we consider another Duffing oscillator with a = − 1 and
SW = 0.1m2/s3. In this case, the response of the oscillator is markedly bimodal. The ME solution is again given by
Equation 54 giving an excellent fit, as shown in Figure 2.
8.1.2 | Sample moments

The analysis with population moments in the previous subsection is adopted to benchmark the KDME PDF. In
general, we have samples of data, from which sample moments are derived. In this subsection, we consider the
unimodal Duffing oscillator, characterized by a = 1 and SW = 1m2/s3, and sample moments, relative to the response
samples of different sizes, determined by modeling the stochastic input in terms of normal standard random
variables,42-44 ie,

F t;uð Þ ¼ ∑
nω

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G ωkð ÞΔω

p
cos ωktð Þuck þ sin ωktð Þusk
�  ¼ ∑

nω

k¼1
sck tð Þuck þ ssk tð Þusk ¼ s tð Þ·u; (55)

where G(ωk) is the one‐sided power spectral density (PSD) of the input, nω is the number of harmonic components,

uck and usk, k = 1, 2, …, nω are standard normal random variables, collected in the vector u ¼ uc usf gT of order

2nω, and the vector s tð Þ ¼ sc tð Þ ss tð Þf gT collects the corresponding deterministic shape functions

sck tð Þ ¼ σk cos ωktð Þ and ssk tð Þ ¼ σk sin ωktð Þ, where σk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G ωkð ÞΔωp

. In the case of the considered stationary white



FIGURE 1 Response of a Duffing oscillator. Comparison with generalized kernel density maximum entropy method (GKDME) and

Gaussian approximations using population moments. A, Probability density function. B, Probability of exceeding in semi‐logarithmic scale
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noise, let G(ωk) = 2SW = 2m2/s3. The oscillator reaches the stationarity at time t = 10 seconds, and the frequency
step in Equation 55 is taken as Δω = (2π)/t = 0.628rad/s.

Several sample sizes have been considered where the fractional moments of some of these samples are summarized
in Table 1, while the corresponding results are represented in Figure 3. As expected, when the number of sample size
increases, the approximation of the KDME PDF improves. Figure 3B shows that with only 2000 samples, the GKDMEM
gives an excellent approximation of small probabilities, Prob[X ≥ 0.86] = 10−8. A crude Monte Carlo simulation (MCS)
would requires more than 1010 samples for such low probability. From inspection of Table 1, it is noted that the number
and powers of the fractional moments are related to the size of the sample. This property shows that the GKDMEM gives
solution with a good trade‐off between bias and variance.
8.2 | Seismic fragility functions of a reinforced concrete frame

As a practical example of the GKDMEM, we consider an application of seismic reliability analysis for a one‐bay 4‐story
reinforced concrete frame modeled using OpenSees.45 The column height and beam length are h = 3 m and L = 5 m,
respectively. All the sections are rectangular 300 × 500 mm, modeled using displacement‐based beam‐column elements,
with fiber‐discretized sections. Column sections contain 8 ϕ20‐mm reinforcing bars, while the beam sections are sym-
metrically reinforced with 4 ϕ20‐mm bars at the top and bottom sides. Thus, the longitudinal reinforcement of all beams



TABLE 1 Fractional moments for a Duffing oscillator, by using samples of different sizes

ns α1 α2 α3 α4

50 0.25 1.75 … …

100 0.50 0.75 1 2.75

1000 0.75 3.25 3.75 4

→∞ 1 2 3 4

FIGURE 2 Response of a bimodal Duffing oscillator. Comparison with generalized kernel density maximum entropy method (GKDME)

and Gaussian approximations using population moments. A, Probability density function. B, Probability of exceeding in semi‐logarithmic

scale
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and columns is 1.67%. The compressive strength of the concrete is 35 MPa, and it is modeled using Concrete01 model in
OpenSees.45 The reinforcing bars are modeled with Steel01 model in OpenSees,45 whereas the yield strength of the steel
is 420 MPa, the elastic modulus is 200 000 MPa, and the strain hardening ratio is b = 0.01. The mass of the structure
includes the self‐weight of the building and additional live load distributed on the beams in accordance with Eurocode
146 for a total of 15 kN/m. The frame is shown in Figure 4.

The seismic hazard is modeled through the response spectrum of Eurocode 8 (EC8),47 whose parameters take into
account the site conditions, while the intensity of the seismic action is given in terms of the peak ground acceleration



FIGURE 3 Response of a Duffing oscillator. Comparison with generalized kernel density maximum entropy method (GKDME)

approximations using sample moments of different size. A, Probability density function. B, Probability of exceeding in semi‐logarithmic scale
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(PGA), Ag, defined from the seismic codes for each site and for different limit states:

RSA T; ζ 0ð Þ ¼

agS 1þ T
TB

2:5η−1ð Þ
� �

0≤ T ≤ TB

2:5agSη TB ≤ T ≤ TC

2:5agSη
TC

T

� �
2:5agSη

TCTD

T

� �
TC ≤ T ≤ TD

TD ≤ T ≤ TE

8>>>>>>>>>><>>>>>>>>>>:
; (56)

where RSA(T, ζ0) is the elastic response spectrum, T is the natural period of the oscillator, ζ0 is the damping ratio,
η = [10/(5 + ζ0)]

1/2, S is the soil factor, TB and TC are respectively the lower and upper limits of the period of the constant
spectral acceleration branch, and TD and TE are respectively the values defining the beginning and end of the constant
displacement response range of the spectrum. In the considered example, we choose type B soil profile,47 ζ0 = 5%, and
Ag = 0.3g, where g is the acceleration of gravity. It follows that TB = 0.15 seconds, TC = 0.50 sec onds, TD = 2.00 sec onds,
and TE = 4.00 seconds while S = 1.20. Figure 5A shows the corresponding response spectrum to these chosen values.

The seismic codes allow time history representations of the seismic action for analyzing the nonlinear behavior of the
structures whereas the response spectrum technique might not provide accurate results. The codes do not suggest a



FIGURE 4 Schematic of the reinforced concrete frame subjected to spectrum‐compatible ground acceleration
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method for generating the earthquake time histories but only recommend that they are response spectrum compatible.
Many common approaches model the earthquake‐induced ground acceleration as realizations of a quasi‐stationary
Gaussian stochastic process. This is defined through evolutionary one‐sided PSD:

GAg ω; tð Þ ¼ φ tð Þj j2GAg ωð Þ; (57)

where φ(t) is a time‐dependent modulating function modeling the temporal nonstationarity, while GAg ωð Þ is the one‐

sided PSD of the stationary counterpart. This representation is adopted in this paper using the model proposed in
Cacciola et al,48,49 which provides the following recursive expression to determine the one‐sided PSD compatible with
the chosen response spectrum:

GAg ωið Þ ¼ 0 0≤ ω≤ ωa

GAg ωið Þ ¼ 4ζ 0
πωi−4ζ 0ωi−1

RSA ωi; ζ 0ð Þ2
η2U ωi; ζ 0ð Þ −Δω∑

i−1

k¼1
GAg ωkð Þ

 !
ω>ωa

8><>: ; (58)

where RSA(ωi, ζ0) is the pseudo‐acceleration response spectrum obtained from Equation 56 for given damping ratio ζ0
and circular frequency ωi = (2π)/Ti, and ηU ωi; ζ 0ð Þ is the peak factor under the assumption of the following barrier
outcrossing in clumps:

ηU ωi; ζ 0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ln 2NU 1−exp −δ1:2U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πln 2NUð Þ

ph ih in or
; (59)

NU ¼ ts
2π

ωi −ln 0:5ð Þð Þ−1

δU ¼ 1−
1

1−ζ 20
1−

2
π
arctan

ζ 0ffiffiffiffiffiffiffiffiffiffi
1−ζ 20

q
0B@

1CA
264

375
1=2

8>>>>><>>>>>:
: (60)



FIGURE 5 A, Response spectrum (Eurocode). B, Spectrum‐compatible power spectral density (PSD)
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In Equation 60, it has been assumed that the input PSD is smooth and ζ0 ≪ 1. Moreover, ts is the time observing win-
dow, assumed equal to the stationary part of the accelerogram. Here, ts = 10 seconds has been chosen, coinciding with
the mimimum duration suggested by the Eurocodes when site‐specific data are not available. Finally, ωa ≅ 1rad/s is the
lowest bound of the existence domain of ηU . Figure 5B represents the one‐sided PSD GAg ωð Þ compatible with the

response spectrum for a given site and PGA.50-52

The temporal nonstationarity is modeled through the modulating function proposed by Jennings et al53:

φ tð Þ ¼
t
t1

� �2

t < t1

1 t1 ≤ t ≤ t2

exp −β t−t2ð Þ½ � t > t2

8>>><>>>: ; (61)

whose parameters are evaluated by imposing that the energy of the stochastic ground motion reaches the values of the
5% and 95%, respectively, in t1 and t2, providing

β ¼ 9
ts
; t1 ¼ 2:5

β
; t2 ¼ 11:5

β
: (62)

The samples of spectrum‐compatible ground acceleration are determined through Equation 55, where the PSD G(ω)
is replaced by the evolutionary PSDGAg ω; tð Þ defined by Equation 57. For the sake of illustration, Figure 6 presents some

samples.



FIGURE 6 Two samples of simulated spectrum‐compatible ground motions
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For an informed decision‐making process on the design of the structure, a powerful tool is represented by the perfor-
mance‐based earthquake engineering (PBEE) approach.54,55 An important stage of the PBEE approach is represented by
the fragility functions, defined as the probability that the engineering demand parameter (EDP) is greater than a chosen
FIGURE 7 Fragility function in terms of the maximum interstory drift of a frame subjected to seismic excitation. Comparison of Monte

Carlo simulation (MCS) (100 000 samples) with kernel density (KD), kernel density maximum entropy (KDME), and lognormal

approximations (50 samples). A, Probability density function. B, Probability of exceeding in semi‐logarithmic scale
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threshold (edp) for a given intensity measure (IM) of the seismic input (im), ie, PEDP(edp) = Prob[EDP ≥ edp|IM = im]. In
the considered case, the IM is the PGA with value Ag = 0.3g, while a typically adopted EDP in PBEE is the maximum
interstory drift Δ. Thus, the fragility function is PΔ(δ) = Prob[Δ ≥ δ|Ag = 0.3g]. Since all the simulated accelerograms
have the same chosen PGA, the corresponding fragility function is determined from the distribution fΔ(δ) or FΔ(δ) of
the maximum interstory drift.

Typically, the fragility functions are assumed unanimously to follow a lognormal distribution.56,57 However, some
researchers have recently questioned the validity of such assumption and proposed nonparametric methods for deter-
mining their distribution.58 To this aim, in this numerical example, we compare the fits given by the lognormal distribu-
tion, the classical KD, and the newly developed GKDME in this paper with the reference solution, here represented by a
MCS with ns = 100 000 samples. The approximate distributions are evaluated by considering a reduced set of dynamic
computations, namely, ns 1ð Þ ¼ 50 and ns 2ð Þ ¼ 2000 samples. The corresponding results are shown in Figures 7 and 8.
The target solution, represented by MCS, is represented with circle markers; only probability values PΔ ≥ 10−3 are
shown. This is because, from reliability theory,59,60 it is known that, for given number of samples ns, the probability
of exceeding PΔ is estimated with a coefficient of variation νP only for

PΔ ≥
1

1þ nsυ2P
: (63)
FIGURE 8 Fragility function in terms of the maximum interstory drift of a frame subjected to seismic excitation. Comparison of Monte

Carlo simulation (MCS) (100 000 samples) with kernel density (KD), kernel density maximum entropy (KDME), and lognormal

approximations (2000 samples). A, Probability density function. B, Probability of exceeding in semi‐logarithmic scale
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From Equation 63, it is seen that PΔ ≥ 10−3, for ns = 100 000 and a chosen accuracy νP = 10%. For a reduced number,

n 1ð Þ
s ¼ 50 of simulated ground motions, the lognormal distribution fits very well the central part of fΔ(δ). However, the

approximation of the tails is not as good, and this may represent a crucial issue for decision‐making process with respect
to events with low probability and high consequences. The KD and the GKDME are not in good agreement with the cen-
tral part of the distribution, because with the KD estimations, no assumption is made about the functional form, but they
are driven by the data. However, it is noted that only the GKDME predicts with good accuracy the tails of the distribu-

tion. In Figure 8, we show that the increase of the number of samples n 2ð Þ
s ¼ 2000 leads to an excellent fit of GKDME to

the target distribution, including its tails. With 2000 samples, also, the KD gives a good approximation, but it is expected
that for the lowest probability levels, ie, PΔ ≤ 10−3, GKDME outperforms KD, because of its prediction capabilities.

It is also noted that although the lognormal PDF predicts well the central part of the “true” fΔ(δ) for this example,
some numerical applications could exist, where this is not the case. Conversely, the GKDMEM determines a data‐driven
distribution whose free parameters satisfy the principle of ME, and therefore, the GKDME PDF is the most “honest”
distribution fitting the data but keeping good prediction capabilities with respect to the unseen data.

Finally, the bootstrap resampling technique described previously is used to assess the credible bounds. The percen-
tiles q = 5% and 99% are used, while the bounds are obtained with 100 bootstrap samples. It is noted that the GKDME
PDF with the bootstrap mean values of the probabilities pi does not differ from the GKDME PDF estimated with the
original set of observations. In Figure 9, we present the credible bounds of the GKDME distribution for the 2 samples

of size n 1ð Þ
s ¼ 50 and n 2ð Þ

s ¼ 2000. As expected, the bounds are narrower for the larger n 2ð Þ
s case.
FIGURE 9 Credible bounds of the maximum interstory drift of a frame subjected to seismic excitation, in the case of data samples of size:

A, 50. B, 2000
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9 | CONCLUDING REMARKS

The paper presented a novel approach for determining the distribution of a random variable from a sample of data. The
method is called KDME with generalized moments because it applies the principle of ME to the discretized moment
problem, obtained through a KDR of the target distribution. The proposed approach has several advantages with respect
to the existing literature. First, it is based on the principle of ME, which gives the least biased distribution with respect to
the available information. Therefore, the obtained distribution is the most honest and least subjective choice. Second, the
KDR guarantees high flexibility, providing a close fit to the data. From the other side, the proposed approach does not
share the drawbacks of the existing KD methods: (1) it gives good approximations of the tails of the distributions also
in the presence of samples of small size, (2) a good trade‐off between bias and variance is obtained through the applica-
tion of the Akaike information criterion, which penalizes the model complexity, and (3) the accuracy of the approxima-
tion is not significantly affected by the choice of the KDFs or by the evaluation of their bandwidth, since the free
parameters are the probabilities determined through the principle of ME. Moreover, the parameters of the KDME are
obtained through an algorithm with good properties of robustness and computational efficiency. The involved nested
optimization procedure is simply reduced to the solution of a set of systems of linear equations with a reduced number
of unknowns (typically not more than 4), which also implies the uniqueness of the solution for given sample of data.

From the considered numerical examples, the method can be applied by adopting good approximations of the popula-
tion moments13 or also through sample moments derived from samples of data. In the latter case, a determination of cred-
ible bounds can be developed through a bootstrap resampling technique. The main features of the method have been
shown through the application to a Duffing oscillator, whose response distribution is known in a closed form. The appli-
cation to a practical reinforced concrete example frame subjected to seismic excitation has shown the great potential of the
proposed procedure to obtain an optimal distribution for the fragility functions, given the available information, repre-
sented fromnumerical analyses, or experimental data acquired through laboratory tests or a network of sensors in the field.
ACKNOWLEDGEMENT

This research was funded by the Republic of Singapore's National Research Foundation through a grant to the Berkeley
Education Alliance for Research in Singapore (BEARS) for the Singapore Berkeley Building Efficiency and Sustainability
in the Tropics (SinBerBEST) program. BEARS has been established by the University of California, Berkeley, as a center
for intellectual excellence in research and education in Singapore. Khalid M. Mosalam is a principal investigator of
Tsinghua‐Berkeley Shenzhen Institute (TBSI). The authors acknowledge the funding support from SinBerBEST and
the partial support from TBSI.

The authors thank two anonymous referees whose comments have contributed to the enhancement of the paper.
ORCID

Umberto Alibrandi http://orcid.org/0000-0001-9729-9536
Khalid M. Mosalam http://orcid.org/0000-0003-2988-2361
REFERENCES

1. Pearson E, Johnson N, Burr I. Comparison of the percentage points of distributions with the same first four moments, chosen from eight
different systems of frequency curves. Commun Stat B. 1979;8:191‐229.

2. Low YM. A new distribution for fitting four moments and its applications to reliability analysis. Struct Saf. 2013;42:12‐25. https://doi.org/
10.1016/j.strusafe.2013.01.007

3. Charlier C. A new form of the frequency function. Medd Lund Astron Obs Ser. 1928;51

4. Edgeworth FY. The law of error. Cambridge Ohilos Soc. 1905;20:36‐66. 113–41

5. Winterstein SR. Nonlinear vibration models for extremes and fatigue. J Eng Mech. 1988;114:1772‐1790. https://doi.org/10.1061/
(ASCE)0733‐9399(1988)114:10(1772)

6. Jaynes ET. Information theory and statistical mechanics. Phys Rev. 1957;106:620‐630. https://doi.org/10.1103/PhysRev.106.620

7. Jaynes ET. Where do we stand on maximum entropy? The Maximum Entropy Formalism. 1978;15‐118. https://doi.org/10.1007/
BF01008275

http://orcid.org/0000-0001-9729-9536
http://orcid.org/0000-0003-2988-2361
https://doi.org/10.1016/j.strusafe.2013.01.007
https://doi.org/10.1016/j.strusafe.2013.01.007
https://doi.org/10.1061/(ASCE)0733-9399(1988)114:10(1772)
https://doi.org/10.1061/(ASCE)0733-9399(1988)114:10(1772)
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1007/BF01008275
https://doi.org/10.1007/BF01008275


ALIBRANDI AND MOSALAM 1927
8. Kapur J, Kesavan H. Entropy Optimization Principles with Applications. San Diego, NY: Academic Press; 1992.

9. Vapnik VN. The Nature of Statistical Learning Theory. vol. 8 1995. doi:https://doi.org/10.1109/TNN.1997.641482.

10. Winterstein SR, Mackenzie CA. Extremes of nonlinear vibration: comparing models based on moments, L‐moments, and maximum
entropy. J Offshore Mech Arct Eng. 2015;135:1‐7. https://doi.org/10.1115/1.4007050

11. Novi Inverardi PL, Tagliani A. Maximum entropy density estimation from fractional moments. Commun Stat ‐ Theory Methods.
2003;32:327‐345. https://doi.org/10.1081/STA‐120018189

12. Taufer E, Bose S, Tagliani A. Optimal predictive densities and fractional moments. Appl Stoch Model Bus Ind. 2009;25:57‐71.

13. Zhang X, Pandey MD. Structural reliability analysis based on the concepts of entropy, fractional moment and dimensional reduction
method. Struct Saf. 2013;43:28‐40. https://doi.org/10.1016/j.strusafe.2013.03.001

14. Athanassoulis GA, Gavriliadis PN. The truncated Hausdorff moment problem solved by using kernel density functions. Probabilistic Eng
Mech. 2002;17:273‐291. https://doi.org/10.1016/S0266‐8920(02)00012‐7

15. Alibrandi U, Ricciardi G. Efficient evaluation of the pdf of a random variable through the kernel density maximum entropy approach. Int J
Numer Methods Eng. 2008;75:1511‐1548. https://doi.org/10.1002/nme.2300

16. Akaike H. Information theory and an extension of the maximum likelihood principle. 2nd Int Symp Inf Theory. 1973;267‐281. https://doi.
org/10.1016/j.econlet.2011.12.027

17. Jaynes ET. Information theory and statistical mechanics. Phys Rev. 1957;106:181‐218. https://doi.org/10.1103/PhysRev.106.620

18. Jaynes ET. Prior probabilities. IEEE Trans Syst Sci Cybern. 1968;4:227‐241. https://doi.org/10.1109/TSSC.1968.300117

19. Jaynes ET. On the rationale of maximum entropy methods. Proc IEEE. 1982;70:939‐952.

20. Tagliani A. Discrete probability distributions in the generalized moment problem. Appl Math Comput. 2000;112:333‐343.

21. Baker R. Probability estimation and information principles. Struct Saf. 1990;9:97‐116. https://doi.org/10.1016/0167‐4730(90)90002‐7

22. Yuan C, Fox RO. Conditional quadrature method of moments for kinetic equations. J Comput Phys. 2011;230:8216‐8246. https://doi.org/
10.1016/j.jcp.2011.07.020

23. Silverman BW. Density Estimation for Statistics and Data Analysis. vol. 37 1986. doi:https://doi.org/10.2307/2347507.

24. Scott DW, Sain SR. Multidimensional density estimation. Handb Stat. 2004;24:229‐261. https://doi.org/10.1016/S0169‐7161(04)24009‐3

25. Lin Y, Cai GQ. Probabilistic Structural Dynamics. New York: McGraw‐Hill; 2004.

26. Alibrandi U, Ricciardi G. Stochastic method in nonlinear structural dynamics. In: Elishakoff I, Soize C, eds. Nondeterministic Mechanics.
Udine, Italy: Springer; 2011:3‐60.

27. Alibrandi U, Di Paola M, Ricciardi G. Path integral solution solved by the kernel density maximum entropy approach. Int. Symp. Recent
Adv. Mech. Dyn. Syst. Probab. Theory, MDP – 2007, Palermo, June 3‐6, 2007, 2007.

28. McGraw R. Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci Tech. 1997;27:255‐265. https://doi.org/
10.1080/02786829708965471

29. Gautschi W. Orthogonal Polynomials: Computation and Approximation. USA: Oxford University Press; 2004.

30. Chalons C, Fox RO, Massot M. A multi‐Gaussian quadrature method of moments for gas‐particle flows in a LES framework. 2010.

31. Yuan C, Laurent F, Fox RO. An extended quadrature method of moments for population balance equations. J Aerosol Sci. 2012;51:1‐23.
https://doi.org/10.1016/j.jaerosci.2012.04.003

32. Wheeler JC. Modified moments and Gaussian quadratures. Rocky Mt J Math. 1974;4:287‐296. https://doi.org/10.1216/RMJ‐1974‐4‐2‐287

33. Yuan C, Fox RO. Conditional quadrature method of moments for kinetic equations. J Comput Phys. 2011;230:8216‐8246. https://doi.org/
10.1016/j.jcp.2011.07.020

34. Lin GD. Characterization of distributions via moments. Sankhya Indian J Stat Ser A. 1992;54:128‐132.

35. Tagliani A. Inverse z transform and moment problem. Probab Eng Inf Sci. 2000;14:393‐404.

36. Novi Inverardi PL, Tagliani A. Discrete distributions from moment generating function. Appl Math Comput. 2006;182‐200–9. https://doi.
org/10.1016/j.amc.2006.03.048

37. Talenti G. Recovering a function from a finite number of moments. Inverse Probl. 1987;3:501. https://doi.org/10.1088/0266‐5611/3/3/016

38. Tagliani A. Hausdorff moment problem and fractional moments: a simplified procedure. Appl Math Comput. 2011;218:4423‐4432. https://
doi.org/10.1016/j.amc.2011.10.019

39. Gzyl H, Novi‐Inverardi PL, Tagliani A. Determination of the probability of ultimate ruin by maximum entropy applied to fractional
moments. Insur Math Econ. 2013;53:457‐463. https://doi.org/10.1016/j.insmatheco.2013.07.011

40. Efron B. The jackknife, the bootstrap and other resampling plans. Complexity. 1982;103. https://doi.org/10.1137/1.9781611970319

41. Lutes LD, Sarkani S. Random Vibrations: Analysis of Structural and Mechanical Systems. Burlington (MA): Elsevier; 2004.

42. Rice SO. Mathematical analysis of random noise. Sel Pap Noise Stoch Process. 1954;133‐294.

https://doi.org/10.1109/TNN.1997.641482
https://doi.org/10.1115/1.4007050
https://doi.org/10.1081/STA-120018189
https://doi.org/10.1016/j.strusafe.2013.03.001
https://doi.org/10.1016/S0266-8920(02)00012-7
https://doi.org/10.1002/nme.2300
https://doi.org/10.1016/j.econlet.2011.12.027
https://doi.org/10.1016/j.econlet.2011.12.027
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1109/TSSC.1968.300117
https://doi.org/10.1016/0167-4730(90)90002-7
https://doi.org/10.1016/j.jcp.2011.07.020
https://doi.org/10.1016/j.jcp.2011.07.020
https://doi.org/10.2307/2347507
https://doi.org/10.1016/S0169-7161(04)24009-3
https://doi.org/10.1080/02786829708965471
https://doi.org/10.1080/02786829708965471
https://doi.org/10.1016/j.jaerosci.2012.04.003
https://doi.org/10.1216/RMJ-1974-4-2-287
https://doi.org/10.1016/j.jcp.2011.07.020
https://doi.org/10.1016/j.jcp.2011.07.020
https://doi.org/10.1016/j.amc.2006.03.048
https://doi.org/10.1016/j.amc.2006.03.048
https://doi.org/10.1088/0266-5611/3/3/016
https://doi.org/10.1016/j.amc.2011.10.019
https://doi.org/10.1016/j.amc.2011.10.019
https://doi.org/10.1016/j.insmatheco.2013.07.011
https://doi.org/10.1137/1.9781611970319


1928 ALIBRANDI AND MOSALAM
43. Shinozuka M, Jan C‐M. Digital simulation of random processes and its applications. J Sound Vib. 1972;25:111‐128. https://doi.org/10.1016/
0022‐460X(72)90600‐1

44. Shinozuka M, Deodatis G. Simulation of stochastic processes by spectral representation. Appl Mech Rev. 1991;44:191‐204. https://doi.org/
10.1115/1.3119501

45. McKenna F. Opensees user's manual. 2010.

46. CEN. Actions on structures—part 1‐1: general actions—densities, self‐weight, imposed loads for buildings. 2002;2.

47. CEN. Eurocode—basis of structural design. En. 2002;3:89. https://doi.org/10.1680/cien.144.6.8.40609

48. Cacciola P, Colajanni P, Muscolino G. Combination of modal responses consistent with seismic input representation. J Struct Eng.
2004;130:47. https://doi.org/10.1061/(ASCE)0733‐9445(2004)130:1(47)

49. Cacciola P, D'Amico L, Zentner I. New insights in the analysis of the structural response to response‐spectrum‐compatible accelerograms.
Eng Struct. 2014;78:3‐16. https://doi.org/10.1016/j.engstruct.2014.07.015

50. Alibrandi U. Tail equivalent linearization methods for seismic response spectrum analysis. 1st ECCOMAS Themat Conf Int Conf
Uncertain Quantif Comput Sci Eng (UNCECOMP 2015) 2015:368–77.

51. Alibrandi U, Mosalam KM. Stochastic dynamic analysis for code‐conforming performance based engineering. Symp. Reliab. Eng. Syst.
(SRES 2015), 2015.

52. Alibrandi U, Mosalam KM. Lifecycle optimal design using performance based engineering. Second Int. Conf. Performance‐based life‐cycle
Struct. Eng. (PLSE 2015), Brisbane: 2015.

53. Jennings P, Housner G, Tsai C. Simulated earthquake motions for design purposes. 4th World Conf. Eart. Eng. Santiago, 1969, p. 145–60.

54. Cornell CA, Krawinkler H. Progress and challenges in seismic performance assessment. PEER Cent News. 2000;3:1‐4.

55. Günay S, Mosalam KM. PEER performance‐based earthquake engineering methodology, revisited. J Earthq Eng. 2013;17:829‐858. https://
doi.org/10.1080/13632469.2013.787377

56. Shinozuka M, Feng MQ, Lee J, Naganuma T. Statistical analysis of fragility curves. J Eng Mech. 2000;126:1224‐1231. https://doi.org/
10.1061/(ASCE)0733‐9399(2000)126:12(1224)

57. Ellingwood BR. Earthquake risk assessment of building structures. Reliab Eng Syst Saf. 2001;74:251‐262. https://doi.org/10.1016/S0951‐
8320(01)00105‐3

58. Sudret B, Mai CV, Konakli K. Computing seismic fragility curves using non‐parametric representations. Earthq Eng Struct Dyn.
2014;0:1‐17. https://doi.org/10.1002/eqe

59. Ditlevsen O, Madsen HO. Structural Reliability Methods. Chichester: Wiley; 1996.

60. Melchers RE. Structural Reliability, Analysis and Prediction. New York: Wiley & Sons; 1999.

How to cite this article: Alibrandi U, Mosalam KM. Kernel density maximum entropy method with generalized
moments for evaluating probability distributions, including tails, from a small sample of data. Int J Numer Methods
Eng. 2018;113:1904–1928. https://doi.org/10.1002/nme.5725

https://doi.org/10.1016/0022-460X(72)90600-1
https://doi.org/10.1016/0022-460X(72)90600-1
https://doi.org/10.1115/1.3119501
https://doi.org/10.1115/1.3119501
https://doi.org/10.1680/cien.144.6.8.40609
https://doi.org/10.1061/(ASCE)0733-9445(2004)130:1(47)
https://doi.org/10.1016/j.engstruct.2014.07.015
https://doi.org/10.1080/13632469.2013.787377
https://doi.org/10.1080/13632469.2013.787377
https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1224)
https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1224)
https://doi.org/10.1016/S0951-8320(01)00105-3
https://doi.org/10.1016/S0951-8320(01)00105-3
https://doi.org/10.1002/eqe
https://doi.org/10.1002/nme.5725

