SinBerBEST Annual Meeting 2013

Progress Report Session

Thrust 6: Cyber-Physical Testbeds

K.M. Mosalam, UC-Berkeley & S.P. Chiew, NTU

9 January 2013

BEARS SinBerBEST

NATIONAL RESEARCH FOUNDATION

Dynamic Interaction for Optimum Energy Efficiency within SinBerBEST

Consumed energy in building construction and operation can be reduced by intelligent interaction between the grid, the building and its occupants/appliances. This requires a transformational paradigm-shift in designing, commissioning, & retrofitting.

Thrust 6: Mission Statement and Plan

Cyber-Physical Testbeds

Verify the actual performance, efficiency and effectiveness of all developed technologies *in other thrusts* as an *integrated* system.

- 1) Survey existing testbeds in Singapore and UC-Berkeley
- 2) Close communication with other thrusts to understand needs for future testing and soliciting cross-thrusts proposals:
 - ☐ Middleware services for testbed integration
 - Cyber-infrastructure for data management
- 3) Develop a decision-making assessment framework

Thrust 6: Pl's

Stefano Schiavon⁶

- Khalid Mosalam (Professor, Structural Engineering, Mechanics, and Materials, CEE, UC-Berkeley, Thrust Co-Leader) 1)
- 2) Sing-Ping Chiew (Associate Professor, Structures and Mechanics, CEE, NTU, Thrust Co-Leader)
- 3) Costas Spanos (Professor, Electrical Engineering and Computer Science, UC-Berkeley, Co-PI)
- 4) King Jet Tseng (Associate Professor, Power Engineering, Electrical and Electronic Engineering, NTU, Co-PI)
- 5) Hock Beng Lim (Director, R&D, Intelligent Systems Center, NTU, Collaborator)
- Stefano Schiavon (Assistant Professor, Center for the Built Environment, Architecture, UC-Berkeley, Collaborator) 6)

Unveiling the Built Environment

We should design indoor environments that are better than the best environment found in nature — Ole Fanger

Building Lifecycle Assessment and SinBerBEST Innovations

Displacement Ventilation & Chilled Ceilings

Manitoba Hydro Building, Canada, by KPMB

David Brower Center, US, by Solomon/WRT

Displacement Ventilation & Chilled Ceilings

Laboratory experiments for typical U.S. interior zone office to investigate how:

- Ratio of cooling load removed by CC over the total cooling load
- 2. Percentage of active ceiling area (radiant surface temperature) affect:
 - i. Air stratification
 - ii. Air change effectiveness

Schiavon S, Bauman F, Tully B, and Rimmer J. 2012. Room air stratification in combined chilled ceiling and displacement ventilation systems. HVAC&R Research, Vol. 18(1). <u>http://escholarship.org/uc/item/980931rf</u>

Center for the Built Environment

A Testbed for Increasing the Heat Load

Schiavon S, Bauman F, Tully B, and Rimmer J. 2013. Temperature stratification and air change effectiveness in a high cooling load office with two heat source heights in a combined chilled ceiling and displacement ventilation system. Submitted to Energy and Buildings. <u>http://escholarship.org/uc/item/58m8302p</u>

SinBerBEST Testbed Initiative in Collaboration with Thrust 3

- Thrust 3: High Confidence Building Operating System focus on reducing energy consumption in interior lighting by developing efficient and intelligent lighting grids using solid-state devices and natural light.
- A project between SinBerBEST & Energy Research Institute (ERI@N) started to use SinBerBEST space as a testbed for assessing visual performance metrics.

SinBerBEST Testbed – Office Environment

12:00h 12:00h

11:00h

Other Testbeds (UC-Berkeley + ERI@N)

Sensor Selection and Placement for CO₂ and Temperature Fields

- Data collected includes Temp., RH, <u>CO₂ concentration</u>, Occupancy, & Supply airflow rate in the defined spaces.
- Idea: Use sparse sensor array, occupancy info., models → CO₂ & Temp fields in a networked rooms.

12 office spaces

SADM Building, level 4 SinBerBEST 2013

Served by same AHU

1 hallway

В 14800 10000 14800 7 office spaces 1 discussion room 1 holding area + hallway Served by same AHU SMPS Building, Level 4

AS-BUILT

TELAIR

00000

Sensor Network Testbeds

SinBerBEST sensor network testbeds deployed at:

- SinBerBEST office space
- BCA test chambers
- ETH BubbleZERO

CO,

ETH BubbleZERO Testbed

BCA Press Release

... of interest is the SinBerBEST's wireless sensing system ... meant to connect test labs from various sites in Singapore to a central monitoring server so that building technology researchers could share data and align research activities on facades or indoor environment quality going forward."

Deployment Status

Deployed heterogeneous sensor networks:

- MicaZ with TinyOS
- TelosB with Contiki OS
- iMotes, IRIS

Sensing functionality:

- Temperature, light, humidity, CO₂ levels
- Example: humidity readings from TelosB

Data Stream

 Sensor data streaming from SinBerBEST testbed to Berkeley's Sensezilla

Demo Prototype

Dashboard Interface:

- □ Heat map
- Network topology
- Real time sensor data

Future Extension: Data Management and Analytics Framework for Smart Buildings

Motivation:

- Building Information Model (BIM) are required for all building design submissions
- Current BIM provides building information that is mainly architectural & physical in nature without sensing and information of energy consumption.
- BIM has the potential to be a universal data aggregation platform.

Objective:

Develop a data management and analytics framework to share data from different building testbeds and to integrate with BIM.

CREST[†] 406 Bubble: A Testbed in Cory Hall, UC-Berkeley

SinBerBEST 2013

22

CREST 406 Bubble

Data Connectivity in a Sensing Bubble

Objectives:

EnergyEyes app uses QR codes & real-time data flow from devices to an end-user to find energy waster

Performance-based Engineering (PBE) for "Best" Decision of Energy-efficient & Sustainable Building Design

Objective:

Develop a framework to make the best decision for building design satisfying:

- ✓ Energy-efficiency
- ✓ Sustainability
- ✓ Safety
- ✓ Economical constraints, etc.

considering interests of stakeholders & sources of uncertainties during lifecycle.

Decision-Making Process:

MIVES (Model for Integration of Values for Evaluation of Sustainability)

4 steps:

- Tree Construction
- Value Function
- Weight Assignment
- Selection Amongst Alternatives

Testbed for PBE-MIVES Approach

Example building: UCS building at UCB Details are presented tomorrow by Dr. Hyerin Lee

Mosalam K.M., Armengou J., Lee H., Günay S., and Chiew S.P., "Performance-based Engineering Approach to the Best Decision for Energy-efficient and Sustainable Building Design," Invited Paper, 1st International Conference on Performance-based and Life-cycle Structural Engineering (PLSE 2012), 5-7 December 2012, Hong Kong, China.

- Selecting major indicators (including those for safety and health in construction activities) and corresponding weights in office building design
- Collecting data/defining probability distributions & correlations for office buildings in the tropics
- Accounting for results obtained from various testbeds, e.g. on newly developed façade systems
- Evaluating the efficiency of a newly developed technologies, e.g. novel façade systems

Thank You! Questions? Comments?