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Mission Statement

Develop Foundations, Methodology and Tools to design
and demonstrate a multi-scale embedded, intelligent
distributed system consisting of wireless and wired
networked sensors, actuators and controllers that executes
a hierarchical control plan in real-time and in cooperation
with building energy distribution grids and interactions with
external utility grid, while adapting to system evolutions and
local variations, controlling and optimizing resources.
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Building Operating System

= Objectives: To apply new foundations and methodologies to design
and demonstrate building operating systems that
— Enable a fundamental change from oblivious consumption and isolated
production to aware, agile, optimized and adaptive consumption and

generation of energy in the building, particularly in the form of electrical
power;

— Provide high degree of cooperation between the building and the future
extended smart power grid which incorporates intelligence into various
points of consumption and generation within the building;

— Provides critical functionality at all times, despite damages caused by
accidental faults, errors, and degradations or malicious intrusions.

= Methodologies: Utilize and integrate pervasive instrumentation,
broadly embedded intelligence, control and communication,
modeling, forecasting and planning to actively manage the load
buildings present to an intelligent energy distribution grid within and
external to the building while also providing a comfortable and
productive environment to occupants.
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Concept of Building Operating System

Building-wide Distributed Operating System
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Status of Research Team in Thrust 3

= Principal Investigators:

Alberto SANGIOVANNI
King-Jet TSENG
Sanjib PANDA

Boon Hee SOONG
Peter CHONG

Y C LIANG

= Collaborators:

Francesco BORRELLI (UCB)
Gilbert FOO (NTU)

Jiyun ZHAO (NTU)

Zhili ZHOU (IBM)

Forrest Megger (ETH-FCL)
Danielle Griego (NTU)
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Work Packages for Jan 2012 — Mar 2013

= WP3.1: Development of Building Automation and Control
(BAC) Systems

a. Modeling and Optimal Controller Design for HVAC System
b. Controller Platform Framework Setup
c. Sensor Selection and Placement

= WP3.2: Intelligent Energy Distribution Systems in
Buildings
a. Intelligent Power Switches with Cooperative Energy Storage
b. Hybrid DC/AC Building Power Distribution
= WHP3.3: Information Networks for Smart Buildings

a. Design and Optimization of Efficient Information Networks
b. Energy Management Applications
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WP3.1la:Modeling and Optimal Controller Design

Observations:

buildings uses simple control
schemes dealing with one
subsystem at a time...

« Local actions are determined
without taking into account the
interrelations among:

— Outdoor weather
conditions

— Internal heat gains
— Indoor air quality
— Cooling demands

— HVAC process
components

SinBerBEST BEARS
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WP3.1la:Modeling and Optimal Controller Design

E\

=

Thermal and circuit model of a wall with
window
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WP3.1a:Modeling and Optimal Controller Design

Parameter and Unmodeled Dynamics Estimation

 Initial guess (ASHRAE Handbook)
« Used fmincon .
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WP3.1a:Modeling and Optimal Controller Design
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WP3.1a:Modeling and Optimal Controller Design
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WP3.1b:Controller Platform Framework Setup

Co-design of Control Algorithm and
Embedded Platform for HVAC Systems

Problem statement
» The design of HVAC systems involves three main aspects:

* Physical components and environment,

«  Control algorithm that determines the system operations
based on sensing inputs,

 Embedded platform that implements the control algorithm.

» In the traditional top-down approach, the design of the HVAC
control algorithm is done without explicit consideration of the
embedded platform.

With the...
 Employment of more complex HAVC control
algorithms,

« Use of distributed networked platforms, and
« Imposing of tighter requirements for user
comfort,

SinBerBEST BEARS
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WP3.1b:Controller Platform Framework Setup

Co-design framework for HYAC systems

Control constraints
and objectives
(energy cost, user
comfort)

Design space exploration

Control algorithm design |
(controller type, parameters) | |
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WP3.1c: Sensor Selection and Placement

fBubeeZERO Research )
Setup
Which is conceived as part of the Low

Exergy Module development for
Future Cities Laboratory (FCL) of ETH

\_in Singapore. )

(I'he environment sense system \
includes:

8 indoor sensors (Telosb41-48)

4 CO2 concentration sensors (flap31-
34) :
Q outdoor sensors (Telosbh53-56) } ARS




WP3.1c: Sensor Selection and Placement
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WP3.2:

Intelligent Energy Distribution in Buildings
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WP3.2a: Intelligent Power Switch
with Cooperative Energy Storage

»The original concept of intelligent power =
switch (IPS) as in the ‘LoCal’ paper. g

**************

Energy
Storage

*"|PS combines communications witha ™™
power electronic interface to manage the powerComm A oemions
Interface ! information OWSi

link between any energy source or load - —- /" information flows.
and the energy distribution grid.

»Block and circuit diagrams of possible

partial implementations. R e
. Bidirectional
=|ssues and features include: == | oomc 1 "
— Solid-state transformers for voltage translation HF Transformer T

— Low-loss Si-C power electronics
— Battery cell equalization for energy storage
— Circulating energy issue among multiple IPS

— Resilient isolatable energy sub-network s with ‘i T
renewable power generation sources

. i%\/c

— Chemical-free energy storage Lo

— Power line and wireless communications
— Energy harvesting for autonomous sensors

SinBerBEST BEARS




WP3.2a: Intelligent Power Switch
with Cooperative Energy Storage

Development of cell equalizer for lithium-ion battery energy storage system
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WP3.2a: Intelligent Power Switch
with Cooperative Energy Storage
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WP3.2a: Intelligent Power Switch
with Cooperative Energy Storage
Chemical-Free Green Energy Storage System for Buildings — Kinetic Battery
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WP3.2b: Hybrid DC/AC Building Power Distribution

Focus

of

— the
thesis

= |ntelligent Power Switch determines grid connected or islanded operation.

» DG1, DG2 and/or DG3 can be fossil fuel based or renewable energy source based
generator interfaced to common AC bus using power electronic converters.

= Main concerns of micro-grid research are : High band-width active and reactive power
flow control, THD control of current drawn from common AC bus, Load voltage
regulation.. .etc....
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WP3.2b: Hybrid DC/AC Building Power Distribution

Single-phase residential application

= Parallel connected inverter is directly connected
to grid to feed harvested power.

= L_oads are non-linear in nature; requiring another
Inverter circuit to work as PFC.

= Single inverter should be designed doing both the
tasks.

= Most of the synchronous frame (d-g frame)
current controllers are for balanced three-phase
systems; can not be directly applied in single-phase
system.

= If common bus voltage has sag, swell or other
types of harmonic contaminations, critical loads
may malfunction; requiring a topological change in
inverter configuration.

SinBerBEST BEARS
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WP3.2b: Hybrid DC/AC Building Power Distribution

Schematic: Single-phase parallel connected inverter

Prpp Storage Battery
L GRID CONNECTED PARALLEL Pinv * j Qinv P +jQ
\ INVERTER ,
—— e — — —— — — — 1 » i 4
| * I —_—
"1 — | Choke Coil :
! N
PEC + : | R :I
Renewable (IZEonve_rter | +._| YWV l
Energy nsuring |——— —_— i Critical
extractor MPPT of the V"°| [Vin le | ig | () i | 0
Renewable | A | Py +jQ,
L——— energy | |
source
l |
e g LOCAL BUS
VOLTAGE, Vg

= Total load active power P, is shared between inverter active power, P;,, and grid active
power, Py... 1.e. P =P, +P,
= There is a savings in power consumption from grid.
= The current drawn local bus is purely sinusoid with DPF=L1.
= High-performance non-linear current controller is used for the inverter to perform two
actions:

= Active power flow control

=THD control of grid current
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WP3.2b: Hybrid DC/AC Building Power Distribution

_ ﬁ Pongs qpm * P,

——1 PEC A .
Conve_rter WM +
Renewable Ensuring + L
Energy MPPT of the —— Inverter |V,,, o) Y,
extractor Renewable - Vi - p A _L
energy g D
— 1] source - e
Battery LOCAL BUS
Bank VPLTAGE

V,
= Total load active power P, is shared between inverter active power, P; and grid active

nv
power, P,... 1.e. P =P, +P,
= There is a savings in power consumption from grid.

= The current drawn local bus is leading voltage even at the presence of lagging pf load.

= The load voltage V| is pure sinusoid and at rated value even if grid has sag, swell or
harmonic contamination.

= Inverter voltage, V,,, is added vectorially with grid voltage, V to control load voltage, V| .
=THD control of load voltage.
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WP3.2b: Hybrid DC/AC Building Power Distribution

Schematics of the series inverter circuit topology

lue
— SERIES INVERTER

_E} —I:} :L;LTER
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% —l;} GRID SUPPLY

VOLTAGE

L LOAD
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PV String along
With DC/DC
Converter followed
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WP3.2b: Hybrid DC/AC Building Power Distribution

Single phase hybrid connected PV inverter topology

Storage Battery
VCVsl
1 A level 1 A peak
,— —
\ x E& LC FILTER
T T T T T T T T T T | I|
Isolated + : f | : + ZS 25 ZS
+| bpcibc T — L : L 800 8003| |
. Converter| =——=p-V4d | : o|v, M T
Vo]  For e | | ig |A 0.5H
MPPT T - ! Ci D 05H .
- | Tracking f\_J: T i - ZS ZS E
""""""’Gl’zln SUPPLY
VOLTAGE] Vg LOAD -1 LOAD -2
PV Panel €
CcCvsi
x Choke Coil
e RO
|
______ A A 2
ic
\J
(b) (C)

(a)
* Series inverter is used to regulate the load voltage.
« Parallel inverter is used to control grid active as well as reactive power along with grid
current THD control
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WP3.2b: Hybrid DC/AC Building Power Distribution

Hybrid connected PV inverter topology

Effective Non-Linear Load to Grid
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WP3.2b: Hybrid DC/AC Building Power Distribution

= Asingle-phase p-g theory based current reference generation
approach for a single-phase parallel connected inverter is proposed
so that the single inverter is able to control grid active and reactive
power flow as well as shaping the grid currents.

= A Lyapunov function based current controller is proposed so that
single inverter is able to track the current ensuring power flow control
and THD control.

» Asingle-phase series connected inverter control strategy is
proposed ensuring grid active power flow control as well as stabilizing
load voltage under grid voltage sag, swell, harmonic contamination as
well as frequency drift.

= A Spatial Iterative Learning Controller (SILC) is designed to do the
voltage regulation and power flow efficiently.
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WP3.3: Information Networks for Smart Buildings

= WP3.3a: Design and Optimization

— Design of wireless sensor network architecture

— Integration of WSN into BMS

— Incorporation with smart grid framework

— Optimized adoption of communication technologies

= WP3.3b: Applications for Energy Efficient Buildings
— Intra-building energy demand response management
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Wireless Sensor Network (WSN)

> What is WSN?

« The WSN used in smart building management systems consists of
different types of sensor nodes measuring parameters such as

temperature, humidity, light, asphyxiating gases/smoke, occupancy,
and power consumption.

Wireless Sensor Network

Sensor Node
SinBerBEST BEARS 30



Integration of Wireless Sensor Network

= Building Management Systems (BMS) are used for managing and
controlling electrical and mechanical systems, such as lighting, ACMV,
and vertical transportation, in buildings.

= Flexibility of WSN-based system makes it a promising solution to
augmenting existing building’s BMS for better sensing capability and
facilitating energy-efficient building automation.

= |ssues: interoperability and interfacing with existing BMS standards and

legacy devices
o clent

Management Level

el

Lew

Field/Automation

N\ —
Sensors, act atn/

and controllers

Flexible
Deployment

Existing Field Networks Wireless Sensor Network
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Internet of Things (IoT)

= |oT Involves with a huge number of tiny, Dbattery-powered,
Independent and intelligent things/objects to do the followings:

technologies we need

Talk to each other Communications
Perform one or several tasks Hardware/electronics
Make decision Optimization/Control theory

Data/video analytics

= What are these things/objects?
— RFID
— Wireless sensors
— Smart phones
— RFID sensor

— NFC
SinBerBEST BEARS 32




Machine-to-Machine Communication
(M2M)

> What is M2M?

*  M2M means no human intervention whilst ..,.........
devices are communicating end-to-end.

M2M Aroa Network

. D)
>

(o~
PY @
M2M
Gatoway

Machine to Machine ‘

Keywords:physical sensors and actuators;

Machine to Machine

i
Apglication

Keywords:hardware; protocols; end-to-end delay anc @ ‘
reliability &>

Machine to Machine Application

Domain

Keywords:middleware, software, application ©ETSI

« What are the characteristics of M2M?

Multitude
Variety

Invisibility
Criticality

Intrusiveness
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Design with Smart Grid Framework

= Components of Smart Grid relevant to BMS:
— Distributed Energy Resources (DERS): small scale energy generation, e.g. solar
panels, fuel-cells, and storage, e.g. batteries, flywheels, chilled water

— Advanced Metering Infrastructure (AMI): monitoring of energy usage at fine
resolution within building and interfacing with Smart Grid

— Demand Response (DR)/ Demand Side Management (DSM): balancing power
supply and demand
= Femtogrid, a single-building version of Microgrid, is an autonomous,
self-contained network of power generation, transmission, distribution
and storage.

= Femtogrid brings about new possibility of energy saving. Together with
BMS, it allows a holistic approach in reducing energy bill from the Grid.

N

. Femtogrid
. R ’ b | Efficient
‘ Building
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Communications Technologies

= Key communication technologies could consist of:
— Wireless: ZigBee, 6LoOWPAN/802.15.4g, White Spaces, LED
lighting based
— Wired: Power Line Communication

= Cognitive radio techniques to combat harsh wireless
environment.
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User Interface for WSN Data Gathering

Data | Command | Charts | Health | Histogram | Scatterplot | !opology
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WSN Data Gathering
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Energy Demand Response Management

= AMI
— main communication interface
between BMS and Smart Grid
— facilitates DR/DSM, allowing AMI

« Energy metering

temporary load reduction and + Reaktime pricing
load management LRy e e
= Optimization of energy usage
with Smart Grid — power S
scheduling in response to:

— Generation capacity due to E— -
local weather pattern

— Real-time pricing of energy
— Load profile of building

} DR/DSM
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Interactive User Information

Objectives: By utilizing pervasive sensing of embedded devices with sensors and
communication technologies. Through ICT to provide information on user’s real
time preferences according to the price, metrics, outside environment etc.

Building infrastructure
Residential Urban Building network BMS (lighting,

Grid/Electricity Monitoring MAVC gas, water),
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