BEARS Berkeley Education Alliance for Research in Singapore Singapore-Berkeley Building Efficiency SinBerBEST

and Sustainability in the Tropics

Anidolic Daylight Concentrator of Structural **Translucent Concrete Envelope**

B. Huang K.M. Mosalam and S.P. Chiew

January 10, 2013

- 1. Translucent Concrete (TC) Panel Prototype Production
- 2. Light Transmission Tests of the TC Panel
- 3. Light Transmission Simulation of the Optical Fiber (OF)
- 4. Light Concentration Analysis
- 5. Light Transmission Modeling of TC Panel
- 6. Conclusions and Future Goals

Translucent Concrete Panel Prototype Construction

Specimen Details

Volume ratio of the optical fibers = 5%
Diameter of the optical fibers = 0.079 in. (2 mm)
Clear distance of the optical fiber = 0.229 in.
Number of pre-drilled holes = 1600
Distance between neighboring holes = 0.308 in.
Wire mesh 1 in.×1 in.

➢Normal Mortar

Details of Optical Fiber

Property	Value		
Core Material	Polymethyl-Methacrylate Resin		
Cladding Material	Fluorinated Polymer		
Core Refractive Index	1.49		
Refractive Index Profile	Step-index		
Numerical Aperture	0.50		
Number of Fibers	1		
Core Diameter	1840 – 2080 μm		
Cladding Diameter	1880 – 2120 μm		
Approximate Weight	2.8 g/m		

http://i-fiberoptics.com/fiber-detail.php?id=110&sum=90

Wire Mesh 1 by 1 Steel mesh (0.079in) 0.5 0.31 0.3<u>1 | 0.31</u> mesh ⊴ à 1 by 1 mesh 12 Wire Mesh Arrangement (Not to scale)

Translucent Concrete Panel Prototype Construction

Form Setup

Drilling Holes in Acrylic Panel

Installing the Optical Fibers

Before Mortar Placement

Placing Mortar

Finished Specimen

SinBerBEST

Finished Form

Translucent Concrete Panel Prototype Construction

Form Removal

TC Panel

Light Transmission

SinBerBEST

BEARS

Light Transmission Tests of TC Panels

Test Setup

Preliminary TC Panels (made of wood)

Light Source

Experimental Setup

- \blacktriangleright 7 in.×7 in.×0.5 in. hard wood panel
- 7 in.×7 in.×7 in. white & black hard wood boxes
- Incandescent lamp (80 W)
- > 2 mm & 3 mm Optical Fibers

Instrumentation

- LUX meter
- Camera: Sony H5

BEARS

Light Transmission Tests of TC Panels

Details of the TC Panels

Optical Fiber		Volume Ratio (%)		
Diameter	2mm	1	2.5	5
	3mm	2.25	5.625	11.25

Visual Effects

Transmitted Luminous Flux with Different Volume Ratios

Light Transmission Simulation of the OF

- Light Transmission Mechanism
- Daylight Properties
- Light Transmission Simulation of Straight OF
- Bending Effect Simulation of the OF

Light Transmission Mechanism

Daylight Properties

Sunlight

- 1) Visible light wavelength is from 400 nm~750 nm
- 2) Infrared lights have high energy content (44%)

Solar Radiation Distribution on Earth

Light Transmission Simulation of Straight OF

Optical Fiber Details

- Diameter: 2 mm
- Cladding: 0.2 mm
- Core: 1.8 mm

Grid Light Source

- Grid boundary: Annular
- Grid pattern: Circular
- Flux per ray: 0.1 Watts
- No polarization

 $3.16 \times 10^7 \text{ W/m}^2$ -0.5 -1 -1.5 3 16228e+007 1e+007 1.2 .2 3 16228e+006 1e+006-316228-0.8 0.8 100000-0.6 31622.8-0.4 10000-3162.28-0.2 Y (millimeters) 0.2 1000-316.228--0.2 -0.2 100--0.4 -0.4 31.6228--0.6 -0.6 10-3.16228--0.8 -0.8 1--1 0.316228--1.2 1.2 0.1--14 0.0316228-0.01-1.5 0.5 0 -0.5 -1 -1.5 1 0.00316228-X (millimeters) Min:0.00038025 Max:1.0482e+007 Ave:2.264e+006 Total Flux:16.004 W, Flux/Emitted Flux:0.59054, 169 Incident Rays

BEARS

Cylinder 1 Surface 2

Global Coordinates

Irradiation Map for Incident Flux: on cross-section A: Almost 100% of Rays is Transmitted [No Attenuation]

Bending Effect Analysis of the OF

Light Concentration Analysis

≻Convex Lens

Compound Parabolic Concentrator (CPC)

Convex Lens for Light Concentration

BEARS

CPC for Light Concentration

CPC

- A 2D concentrator of light onto edge of a receiver
- Used to design non-imaging devices
- Its generalization is "edge-ray principle" and is the basis of non-imaging optics.

- Source at "infinity"
- Planar input and output apertures
- Perfectly transmits light within $\pm \theta_{a}$

CPC for Light Concentration

BEARS

Light Transmission Modeling of TC Panels

Light Source

- Surface Source: LED Cree C450TR3041
- Total Rays: 4 Million
- Calculated wavelength:
 380 530 nm

Properties of Boxes

- Black paint, Refl. Coef.=0.2
- No paint, Refl. Coef.=**0.6**
- White paint, Refl. Coef.=**0.9**

TC Panel

- 2 mm optical fibers
- Volume ratio = 2.5%

Ray Tracing

BEARS

Light Transmission Modeling of TC Panels

Light Transmission Efficiency

The light transmission property of the boxes is described by the surface flux of the TC panel and the flux of the observation window:

$$R = (F_s - F_w)/F_s$$

R = Flux reduction ratio F_s = Surface flux of the TC panel F_w = Flux at the location of the observation window

Light Transmission Efficiency Comparison

Differences between the model and the test are due to:

- 1) Actual surface properties;
- 2) The sources of light;
- 3) Damages of the end face of the optical fiber

End face of optical fibers (Fedor Mitschke, 2009)

- 1. Translucent concrete (TC) can represent an energy efficient solution for the building envelope.
- 2. Construction of the TC panel is feasible.
- 3. Daylight transmission properties of the TC panel is controlled by the volume ratio of the fibers.
- 4. Light collection property of the TC panel can be improved by utilization of convex lens and CPCs.
- 5. The bending of the fiber should be minimized as it affects the light transmission performance.

Future Goals

- 1. Dynamic modeling of the sun inclination
- 2. Optimal design of the CPC
- 3. CPC spatial arrangement in the TC panel
- 4. Daylight collection of the CPC and optical fibers
- 5. Thermal insulation performance optimization of the TC panel

Heliodon Test

Thanks for your attention!

Questions / Comments?

