SinBerBEST Annual Meeting 2013

Technical Session 2

Performance-based Engineering Approach to the "Best" Decision for Energy-efficient and Sustainable Building Design

H. Lee, K.M. Mosalam & S.P. Chiew

10 January 2013

BEARS SinBerBEST

NATIONAL RESEARCH FOUNDATION

Objective

Develop a framework to make the best decision for building design, which is

- ✓ Energy-efficient
- ✓ Sustainable
- ✓ Safe
- ✓ Economic, etc.

considering interests of various stakeholders and accounting for all sources of uncertainties during the life cycle of the building.

Decision-Making Process:

MIVES (Model for Integration of Values for Evaluation of Sustainability)

4 steps:

- Tree Construction
- Value Function
- Weight Assignment
- Selection Amongst Alternatives

□ MIVES: Decision-Making Process

Tree Construction

San José and Garrucho (2010); Pons (2011)

The branches of a tree should accomplish the followings:

- ✓ Relevance
- ✓ Difference-making for each one of the alternatives
- ✓ Minimal number of items

Iyengar (2012) [http://www.trendhunter.com/keynote/sheena-iyengar]

- ✓ <u>Cut</u>: Use 3 levels of unfolded branches, and every branch to have 5 subbranches or less in the successive unfolding steps;
- ✓ **Concretize**: Use indicators that experts and stakeholders can understand;
- ✓ Categorize: Use more categories and fewer choices; and
- ✓ **Condition**: Gradually increase the complexity.

□ MIVES: Decision-Making Process

Value Functions

- ✓ Non-negative increasing/decreasing functions, $0 \le V^i(X_k^i) \le 1$
- ✓ Linear, concave, convex, S-shaped, etc.
- Presence of value functions allows for consideration of a broad range of indicators and relaxes need for using indicators with same units.

Number of new patents used in building design

Annoyance to neighbours (noise) during construction

□ MIVES: Decision-Making Process

Weight Assignment

Requirement	W _{req} %	Criteria	W _{crit} %	i	Indicator	W _{ind} %	Unit	
Functional	10.0	Quality perception	30.0	1	User	75.0	0-5]
				2	Visitor	25.0	0-5	
		Adaptability to changes	70.0	3	Modularity	100.0	%	
Economic	50.0	Construction	50.0	4	Direct cost	80.0	\$	
		cost		5	Deviation	20.0	%	
		Life cost	50.0	6	Utilization	40.0	\$	
				7	Maintenance	30.0	\$	
				8	Losses	30.0	\$	Slides 9 to 11
Social	20.0	Integration of science	10.0	9	New patents	100.0	#	
		:	:	:	:	:	:	
	20.0	Construction	20.0	15	Water consumption	10.0	m ³]
				16	CO ₂ emission	40.0	Kg	
				17	Energy consumption	10.0	MJ	
				18	Raw materials	20.0	Kg	
				19	Solid waste	20.0	Kg	
Environmental		Utilization	40.0	20	Noise, dust, smell	10.0	0-5	
				21	Energy consumption	45.0	MJ/year	
				22	CO ₂ emission	45.0	kg/year]
		:	:	:	:	:	:	

□ MIVES: Decision-Making Process

Selection Amongst Alternatives

Integration of values
of every indicator of
an alternative k
$$V_{k} = \sum_{i=1}^{N_{ind}} W_{req}^{i} \cdot W_{crit}^{i} \cdot W_{ind}^{i} \cdot V_{i}^{i} \left(X_{k}^{i}\right)$$

Weights Value function

✓ The overall value of each alternative is determined → The alternative that has the highest value, i.e. closest to 1.0, becomes the most suitable alternative, i.e. the "best" solution.

D PBE approach

- Design framework resulting in the desired system performances at various intensity levels of hazards or environmental demands
- Explicit calculation of system performance measures in a rigorous probabilistic manner without heavily relying on expert opinion
- Outcome in terms of the direct interests of various stakeholders

Testbed for PBE-Approach

Example building: UCS building at UCB Economic loss due to EQ [2% POE in 50 years]

POE and PDF can be calculated based on the total probability theorem.

PBE-Approach: Extension to Indicators in the Tree

PBE for Earthquake Engineering

 $P(DV) = \sum \left[P(DV \mid EDP_{NC}, IM) \cdot p(EDP_{NC} \mid IM) + P(DV \mid EDP_{C}) \cdot p(EDP_{C} \mid IM) \right] \cdot p(IM)$

- ✓ Intensity Measure (IM)
- ✓ Decision Variable (DV)
- Collapse (C) & No Collapse (NC)

For structural safety: IM can be Sa [spectral quantity] based on a certain POE & return period at a specific site.

PBE for Sustainability

 $P(SDV) = \sum P(SDV \mid EM) \cdot p(EM \mid CV) \cdot p(CV)$

✓ Climate Variable (CV)

- ✓ Energy Measure (EM)
- ✓ Sustainability Decision Variable (SDV)

For Indicators, e.g. sustainability decision variable such as CO_2 emission: IM can be substituted with one of the environmental demands, CV, e.g. average outdoor temperature.

Multiple Indicators in a Direct Probabilistic Manner

Assume **3** indicators DV_{CO2} , DV_E and DV_{ST} with PDFs: $f_{CO2}(DV_{CO2} = a) = A$, $f_E(DV_E = b) = B$, $f_{ST}(DV_{ST} = c) = C$

Weights: w_{CO2} , $w_E \& w_{ST}$, Value functions: u_{CO2} , u_E , $\& u_{ST} \rightarrow$ Overall value for the indicators: $V(a,b,c) = V_{CO2}(a) + V_E(b) + V_{ST}(c) = w_{CO2}u_{CO2}(a) + w_Eu_E(b) + w_{ST}u_{ST}(c)$

If DV_{CO2} , $DV_E \& DV_{ST}$ are **mutually independent**, the joint PDF is:

$$f(a,b,c) = f_{CO2, E,ST} (DV_{CO2} = a, DV_E = b, DV_{ST} = c) = f_{CO2} (DV_{CO2} = a) f_E (DV_E = b) f_{ST} (DV_{ST} = c) = ABC$$

else,

$$f(a,b,c) = f_{CO2,E,ST} (DV_{CO2} = a, DV_E = b, DV_{ST} = c)$$

= $f_{CO2} (DV_{CO2} = a) f_{E|CO2} (DV_E = b|DV_{CO2} = a) f_{ST|CO2,E} (DV_{ST} = c|DV_{CO2} = a, DV_E = b)$

Conditional probability distribution should be defined.

$$P(DV^{n} = a) = p(DV > DV^{n} = a) = \int_{a}^{\infty} f_{DV}(DV) d(DV)$$

 $P(DV^n)$: POE of *n*th value of *DV*, $p(DV > DV^n = a)$: probability of *DV* exceeding *a*, the *n*th value of *DV*.

PBE-MIVES: Application to the UCS Building

Two alternatives with different fuel consumption ratios

Electricity : Natural gas = 5 : 2 (**Plan 1**) in Btu, Electricity only (**Plan 2**)

Assumptions for the energy expenditure and CO₂ emission

- ✓ Bivariate lognormal distribution assumed for energy expenditure and CO₂ emission for 50 years (building life span).
- Each mean value estimated based on data for office buildings in the West-Pacific region (by DOE, EIA, & EPA).
- \checkmark Standard deviation assumed as **30%** of the corresponding mean value.
- \checkmark Coefficient of correlation assumed as **0.8**.

Probability density function of CO₂ emission (x_1) and energy expenditure (x_2) for Plan 1

Tree Construction and Weight Assignment

Requirement	W _r [%]	Criteria	i	Indicator	W _i [%]	Unit	
Environmental	25.0	Utilization	1	CO ₂ emissions	100.0	1000 kips 🗕	
Economic	75.0	Life cost	2	Energy expenditures	60.0	\$million 🔸	
			3	Losses	40.0	\$million 🔸	 independent

Value Functions

PBE-MIVES: Application to the UCS Building

Selection Amongst Alternatives

 $V_{prob} = \int_{\Omega} V f d\Omega$

The expected value of each alternative in a pre-defined domain \rightarrow rank alternatives

No economic loss due to EQ, i.e. $x_3 = 0$ Case 1: $0 \le x_1 \le 80, 0 \le x_2 \le 15$ Plan

Case 2: $0 \le x_1 \le 80, 0 \le x_2 \le 20$

Domain Dependency !

SinBerBEST 2013

14

Concluding Remarks

- The probabilistic nature of the indicators can be considered in MCDA either indirectly by calculating the value of each indicator in a probabilistic manner or directly by formulating the value determination equation in a probabilistic framework.
- The correlation between the different indicators is taken into account in the direct formulation and it is the preferred method when there is significant interdependency between indicators.
- ✓ In the comparison of V_{prob} in the UCS application building, considered range of indicators can change the value of the alternatives and affect the final decision. Attention should be paid to the selection of the proper range of indicators.

Matlab code for PBE-MIVES

📝 C:\	Rese	arch 12\SinBerBEST\PBE-MCDM\loss data\PBEMIVESv4.m						
<u>F</u> ile	<u>E</u> dit	<u>T</u> ext <u>G</u> o <u>C</u> ell T <u>o</u> ols De <u>b</u> ug <u>D</u> esktop <u>W</u> indow <u>H</u> elp	ъ					
: 🎦	e	📕 & ங 🛍 🤊 (* 🍓 🖅 - 🗛 🖛 🏘 🖌 🗧 🛍 🖷 🗸	»					
: + <mark>=</mark>	4	-1.0 + $\div 1.1$ × $9\%^{\circ}_{+}\%^{\circ}_{+}$						
58	_	Vf=0;						
59	-	- for i=1:nx1	_					
60	-	for j=1:nx2	0 🚞					
61	-	z(i,j)=((X(i,j)-mu1)^2.)/(sigma1^2.)+((Y(i,j))	-					
62	-	f12(i,j)=(1./(2.*pi*sigma1*sigma2*sqrt(1-rho^:						
63	-	f=f+f12(i,j)*(x1max-x1min)/nx1*(x2max-x2min)/1						
64		\$						
65		<pre>% value function</pre>						
66		\$						
67	-	if (X(i,j) <log(4))< td=""><td></td></log(4))<>						
68	-	v1(i,j)=1.0;						
69	-	elseif $(X(i,j) < \log(3\delta))$						
70	-	<pre>v1(i,j)=1-1/32*(exp(X(i,j))-4);</pre>						
71	-	else v1(i,j)=0;						
72	-	end						
73	-	if (Y(i,j) <log(20))< td=""></log(20))<>						
74	-	$v_2(i,j) = 1.0;$						
75	-	<pre>elseif (Y(i,j) < log(170))</pre>						
76	-	$v_2(i,j) = 1 - 1/150 * (exp(Y(i,j)) - 20);$						
77	-	else <u>v2</u> (i,j)=0;						
78	-	end						
79		\$						
80	-	V12(i,j) = w1*v1(i,j) + w2*v2(i,j);						
81	-	<pre>x1norm=(exp(i*(x1max-x1min)/nx1+x1min)-exp((i-</pre>						
82	-	x2norm=(exp(j*(x2max-x2min)/nx2+x2min)-exp((j-						
•								
		script Ln 12 Col 28 OVR	1.4					

- Selecting major indicators (including those for safety and health in construction activities) and corresponding weights in office building design
- Collecting data/defining probability distributions & correlations for office buildings in the tropics
- Accounting for results obtained from various testbeds, e.g. on newly developed façade systems
- Evaluating the efficiency of a newly developed technologies, e.g. novel façade systems

Thank You! Questions? Comments?