BEARS | SinBerBEST

Development of Building Automation and
Control (BAC) Systems - Modelling and

Controller Design

Mehdi Maasoumy and Alberto Sangiovanni-Vincentelli

University of California at Berkeley NATIONAL
RESEARCH

FOUNDATION

Motivation 2012 Main Obijectives The Problem

Buildings are the dominant consumers of energy with 40% of total o o
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However the control logic governing today’s buildings uses simple at a time amount of energy

control schemes dealing with one subsystem at a time. This can lead
to scenarios such as simultaneous heating and cooling which

ﬁ he objective is to: \

deteriorates the overall efficiency of the system. e .

Total US energy consumption for buildings: 40% " : :

Total US electricity consumption for buildings: 72% [iackot Coordiniation Ataggalen: 161 DeSIQn a controller that takes Into

Total US natural gas consumption for buildings: 55% B account:
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RMPC: Energy vs. Comfort Conclusion Future Goals
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