Performance-based Engineering Approach to the Best Decision for Energy-efficient and Sustainable Building Design

Khalid M. Mosalam I Hyerin Lee I Jaume Armengou I Selim Günay I **Sing-Ping Chiew**

Funded by: NATIONAL **R**ESEARCH FOUNDATION

Comparison

MOTIVATION

In any stage of a construction project, the decision-making processes play a crucial role from many different standpoints. Multicriteria analysis is a useful tool to be used from the beginning of project planning. However, most multicriteria decision making methods applied in construction management are <u>deterministic</u>. They provide simple and clear concepts to stakeholders, but may distort reality due to sources of uncertainty. In this research, the performance-based engineering (PBE) approach, an extensively used probabilistic approach developed by UC-Berkeley researchers, substitutes for deterministic quantification and provide a deeper understanding of the value of each design alternative.

MAIN OBJECTIVES

Develop a framework to make the best decision for building design, which is

- ✓ Energy-efficient
- Sustainable
- ✓ Safe
- ✓ Economical, etc.

MULTI-CRITERIA DECISION MAKING (MCDM)

Based on the value for each **indicator** which quantifies each design aspect, the overall evaluation of a design alternative is performed. To reflect the **relative importance** of these design aspects, weights are determined by stakeholders through a process where the following questions should be answered (Bandte, 2000):

BEARS | SinBerBEST

considering interests of various stakeholders and accounting for all sources of uncertainties during the life cycle of the building.

✓ Is preference information required? ✓ Is preference presented as relative weights? \checkmark Will the weights be generated during the process? *Ind1* value 1, weight 1 Value of Alternative A Value of Alternative B Ind2 value 2, weight 2 *Ind3* value 3, weight 3 Value of Alternative C Stakeholders' agreement

MODEL FOR INTEGRATION OF VALUES FOR EVALUATION OF SUSTAINABILITY (MIVES)

Similar to the Analytic Hierarchy Process (AHP), MIVES estimates the value of each design alternative based on weights. The process consists of the following 4 stages:

- Tree construction
- Application of value functions: *unique feature*
- Weight assignment
- Overall evaluation, i.e. selection of "best" solution

Value functions transform the response of each indicator into a normalized value (between **0** and **1**).

PERFORMANCE-BASED ENGINEERING (PBE) METHODOLOGY

- Design framework resulting in the desired system performances at various intensity levels of the hazard/environmental demands
- Explicit calculation of system performance measures in a rigorous probabilistic manner without heavily relying on expert opinion
- Outcome in terms of the direct interests of various stakeholders

 $P\left(DV_{j}^{n}\left|EDP_{j}^{i}\right)=\sum P\left(DV_{j}^{n}\left|DM_{k}\right)P\left(DM_{k}\left|EDP_{j}^{i}\right)\right)$ $P\left(DV_{j}^{n}\left|IM_{m}\right.\right)=\sum_{i}^{n}P\left(DV_{j}^{n}\left|EDP_{j}^{i}\right.\right)p\left(EDP_{j}^{i}\left|IM_{m}\right.\right)$ $P\left(DV^{n} \middle| IM_{m}\right) = \sum P\left(DV_{j}^{n} \middle| IM_{m}\right)$ $P(DV^{n}) = \sum P(DV^{n} | IM_{m}) p(IM_{m})$

✓ Intensity Measure (IM)

- ✓ Engineering Demand Parameter (EDP)
- ✓ Damage Measure (DM)
- ✓ Decision Variable (DV)

IM can be average outdoor temperature for energy

PBE-MIVES

PBE approach is combined with MIVES where multiple indicators are considered in a probabilistic manner.

Assume 3 indicators (DVs) are considered, namely CO₂ emissions, energy expenditures, & economic loss during the life cycle of a building, with corresponding probability density functions (PDFs):

$$f_{CO2}(DV_{CO2} = a) = A, \quad f_E(DV_E = b) = B, \quad f_{ST}(DV_{ST} = c) = C$$

Using the weights and value functions, the overall value is:

 $V(a,b,c) = V_{CO2}(a) + V_{E}(b) + V_{ST}(c) = w_{CO2}u_{CO2}(a) + w_{E}u_{E}(b) + w_{ST}u_{ST}(c)$

If the DVs are mutually independent, the joint PDF is: $f(a,b,c) = f_{CO2,E,ST}(DV_{CO2} = a, DV_E = b, DV_{ST} = c)$ $= f_{CO2} (DV_{CO2} = a) f_E (DV_E = b) f_{ST} (DV_{ST} = c) = ABC$ else

 $f(a,b,c) = f_{CO2, E,ST}(DV_{CO2} = a, DV_{E} = b, DV_{ST} = c)$ $= f_{CO2} \left(DV_{CO2} = a \right) f_{E|CO2} \left(DV_{E} = b \right| DV_{CO2} = a \right) f_{ST|CO2,E} \left(DV_{ST} = c \right| DV_{CO2} = a, DV_{E} = b \right)$

FUTURE WORK

Selecting major indicators and corresponding weights in office building design

PDF of CO₂ emissions (x_1) & energy expenditures (x_2) for **Plan 1**

- In a holistic approach to identify the "best" alternative, the following should be considered:
 - ✓ Interests of various stakeholders

- Collecting data/defining probability distributions & correlations for office buildings in the tropics
- Accounting for results obtained from various testbeds, e.g. on newly developed façade systems
- Evaluating the efficiency of a newly developed technologies, e.g. novel façade systems

References

- Bandte, O. (2000). "A probabilistic multi-criteria decision making technique for conceptual and preliminary aerospace systems design". PhD Thesis. Georgia Institute of Technology.
- Mosalam, K. and Günay, S. (2011). "Probabilistic seismic assessment: PEER formulation". Prepared for CEB-FIP TG7.7 State-of-the-Art document: Probabilistic Performance-Based Seismic Design.

	Weight assignment for 3 indicators							
	Requirement	W _r [%]	Criteria	i	Indicator	W _i [%]	Unit	
	Environmental	25.0	Utilization	1	CO ₂ emissions	100.0	1000 kips	
,	Economic	75.0	Life cost	2	Energy expenditures	60.0	\$million	
				3	Economic loss	40.0	\$million	

- ✓ Whole life cycle \checkmark All sources of uncertainties
- PBE approach provides a realistic and reliable solution in MCDM.
- PBE-MIVES is a viable approach, especially as a simple and efficient probabilistic MCDM tool.
- Since PBE-MIVES is a probabilistic method, the "best" alternative depends on the PDF of each indicator, correlations, the pre-defined domain, etc.

Berkeley Education Alliance for Research in Singapore Limited | Singapore-Berkeley Building Efficiency and Sustainability in the Tropics