

City ventilation and Urban Warming

Yuguo Li 李玉國

Department of Mechanical Engineering The University of Hong Kong Hong Kong SAR, China

Importance of cities

- 70% of world's energy is consumed in cities.
- >50% of world population lives in cities.
- Urban population will reach 1 billion by 2030 in China.
- 20,000 to 50,000 new skyscrapers in the next 20 years.
- A high-rise compact city means high building density, population density, human activity, anthropogenic heat (1000W/m²), greater solar heat trapped, heat storage, reduced wind flow, urban heat and pollutant island.

Getting warmer and warmer

Rising annual temperature in Hong Kong (1885-2010) (~50% of warming due to urbanization)

Urban air warmer by >2°C. 1°C increase in daily mean temp >28.2°C increases 1.8% in mortality (Chan et al 2010) . 1°C increase increases 4.5% in electricity use (Fung et al. 2006)

London in fog

Less and less wind in some megacities – why and how to stop it?

Reducing mean wind at Hong Kong King's Park and no change at Waglan Island. Reducing wind at 8 m above along the Northwest **Beijing** 325 m met tower (close to Tsinghua University)

Peng Zhen, MPhil thesis, CAS(2004)

Reduced wind leads to

- urban warming (2-3°C),
- poor air quality,
- poor visibility,
- heat stress in summer,
- reduced productivity
 (May benefit cities in cold climate)
 4

Ginn et al., HKO (2009) @ new data

Why daily timing of max temp has shifted later 为什么日最高温时间后移?

(A) Phase change from 50s to 60 s in major cities in US (left) and Easten Asia (right)

(B) Phase change from 50s to 90 s for major cities in US (left) and Eastern Asia (right)

Global, regional or local?

美国 1990-1999

When local scale matters, when large scale matters?

A simple model ?

$$T_{\rm i}(\omega t) = \tilde{T}_{\rm o} + T_E + \sqrt{\frac{\lambda^2 + \omega^2 \tau^2}{\lambda^2 + \omega^2 \tau^2 (1+\lambda)^2}} \Delta \tilde{T}_{\rm o} \sin(\omega t - \beta)$$

10

A ideal solution for urban air temperature ???

Mean temp Amplitude Phase shift

Convection number

Temp rise Thermal mass Time constant

Total heat transfer number

Why small changes in annual cycle, but large in daily cycle? 为什么年循环变化小,日循环变化大?

Man-made surfaces/structures - the cause of urban warming?

Solar heat trapped Surface radiation trapped More heat generated More surfaces for heat storage Lack of evaporation Lack of wind More residence time Lack of heat removal

Central HK: 100 m high, 60% built area, surface increase by 10 folds, albedo reduces by 50%, less vegetated area... the worst - the heat sources cannot be easily controlled as source control in air pollution control.

Not easy - our key concept – where does heat go in a district or city volume?

Diurnal wind change

- Different trends in rural/urban wind speeds.
- Stronger urban wind @ 11 am 2 pm.
- Stronger urban wind in summer
 @ 11 am 2 pm.

Wang and Li, unpublished

Building ventilation and city ventilation 比较建筑自然通风和城市自然通风

Meso-scale

Development and structure of urban boundary layer in a high-rise compact city

Modified from Fernando. *Ann Rev Fluid Mech* 42:365-389 (2010) In Hong Kong, the buildings and hill are similarly high

Individual flow mechanism is better known, but a) their interaction with a city is mostly unknown

 $u \cdot \frac{\partial p}{\partial x} > 0$

Large scale coherent structure is responsible for surface layer transport

Coceal et al, *Int J Climatol* 27: 1943–1953 (2007)

Scale growth model by vortex merging Tomkins and Adrian, J Fluid Mech 490:37-74 (2003)

Drawn based on Coceal et al, *Int J Climatol* 27: 1943–1953 (2007) and Tomkins and Adrian, *J Fluid Mech* 490:37-74 (2003)

Zilitinkevich, Hunt et al *Q J R Meterorol Soc* 132 (2006)

Extreme horizontal and vertical spatial variability in Hong Kong

Viewed from Kowloon

Viewed from Hong Kong Island

Two characteristics in high-rise compact cities

- Wind cannot penetrate into a high-rise compact city due to the large canopy drag (Belcher, Jerram and Hunt, J Fluid Mech 488:369-398 (2003)).
- The buoyancy driven flows along building walls (wall slope flows) become dominant due to building heights and large wall areas (Yang & Li, Atmos Environ 43:3111-3121 (2009)).

Do ventilation corridors work?

Figure 35 : Major Breezeways

HK Urban design guidelines

Rotating water annulus

Wind dynamics in HK urban canopy layer is a multi-scale phenomenon.

Concluding remarks

- Man-made structures impact more on daily urban air temperature cycles than the annual cycles
- Thermal storage affects the amplitude and phase shift, but less the mean temperatures
- City ventilation affects the entire daily temperature cycles, but systematic studies are rare
- Understanding the daily cycle change is the key to understanding urban warming
- Further work is needed despair on a number of issues

HKU Urban Climate Team

Our team

Dr Hang Jian, PhD 2005-09, post-doc, 2009-2012 Dr Lina Yang, PhD 2005-09, post-doc, 2009-2010 Dr Yang Shuai, post-doc, 2010-2012 Dr Xie Min, post-doc, 2010-2012 Luo Zhiwen, PhD 2006-2010, post-doc 2010-Yang Xinyan, PhD, 2009-Edward Tsui, Mphil, 2005-09, PhD 2009-Xiaoxue Wang, PhD, 2010-Wang Kai, PhD, 2012-Yin Shi, PhD, 2011-

Our collaborators

Mats Sandberg, Sweden Julian Hunt, HKU DVSS Professor Bill Nazaroff, US Berkeley Janet Nichol, PolyU Geography TW NG, Hong Kong Planning Department PW Chan, Hong Kong Observatory

Funding

RGC 2007 Cityvent, HK\$1m HKU UDF 2008, HK\$2m (21m) HKU UDF 2009, HK\$1m (10m) RGC CRF 2013, HK\$5m