BEARS | SinBerBEST

Development of Low Cost Gate Drive for SiC JFET

Chan Yoong Heng and Yung C. Liang

Funded by: NATIONAL RESEARCH FOUNDATION

Motivation

> The current gate driver chip developed by SemiSouth is very costly compared to the SiC JFET itself.

Main Objectives

 \succ To develop a low cost gate driver circuit to drive SiC JFET

The Problem/ Project Background

> The current gate driver chip developed by SemiSouth is very costly compared to the SiC JFET itself.

- > SiC transistors have vast potential in high voltage environment and can reduce the cost of using heatsink as well since it can operate in high temperature conditions.
- > The concepts can be used in driving future SiC MOSFET.
 - Methodology
- \succ To use discrete, cheap and easily available components so that one can build a gate drive circuit in the lab.
- \succ Try to reduce the number of components needed.
- \succ To enhance the current in gate drive for faster switching
- \succ To provide proper isolation between the CMOS control circuits and the high-

- \succ To develop a circuitry which has components which can be used on breadboard testing.
- \succ If possible, to develop a smart circuitry which reacts to increase or decrease the gate voltage and gate current based on temperature conditions.
- > The circuitry is also not flexible
- Development is to be made for a low-cost and yet flexible drive circuit to cater various kinds of SiC JFET devices.
- \succ The gate drive should also be able to enable faster switchings.

Circuit Configuration

voltage power circuit

Channel 2: Gate current Channel 3: Gate voltage **Channel 4: Drain Voltage**

Discussion

Impact / expected result

Future Goals

- \succ The turn-off stage may need modification. The turn-off stage has been slower than expected.
- Current results show that the SiC JFET is able to turn on and off at 50kHz. A higher frequency will be used to enhance the inverter circuit performance, which will be built shortly.
- \succ Expect the circuit to be able to turn on and off the SiC JFET accordingly.
- \succ Expect the low cost circuit to be able to operate at high frequency at more than 1MHz and with good efficiency.
- \succ Circuitry to be able to operate accordingly at various temperature level.
- \succ A full bridge inverter circuit will be built based on the developed gate drive for high efficiency energy conversion.
- > Able to achieve low cost circuitry for fast driving of SiC MOSFET.
- \succ To enhance the operating frequency to MHz range for power electronic system volume reduction.

Berkeley Education Alliance for Research in Singapore Limited | Singapore-Berkeley Building Efficiency and Sustainability in the Tropics