Thrust 6: Cyber-Physical Testbeds

K.M. Mosalam, UC-Berkeley & S.P. Chiew, NTU

9 January 2013
Dynamic Interaction for Optimum Energy Efficiency within SinBerBEST

Consumed energy in building construction and operation can be reduced by intelligent interaction between the grid, the building and its occupants/apparatuses. This requires a transformational paradigm-shift in designing, commissioning, & retrofitting.
Thrust 6: Mission Statement and Plan

Cyber-Physical Testbeds

Verify the actual performance, efficiency and effectiveness of all developed technologies *in other thrusts* as an *integrated* system.

1) Survey existing testbeds in Singapore and UC-Berkeley
2) Close communication with other thrusts to understand needs for future testing and soliciting cross-thrusts proposals:
 - Middleware services for testbed integration
 - Cyber-infrastructure for data management
3) Develop a decision-making assessment framework
Thrust 6: PI’s

1) Khalid Mosalam (Professor, Structural Engineering, Mechanics, and Materials, CEE, UC-Berkeley, Thrust Co-Leader)
2) Sing-Ping Chiew (Associate Professor, Structures and Mechanics, CEE, NTU, Thrust Co-Leader)
3) Costas Spanos (Professor, Electrical Engineering and Computer Science, UC-Berkeley, Co-PI)
4) King Jet Tseng (Associate Professor, Power Engineering, Electrical and Electronic Engineering, NTU, Co-PI)
5) Hock Beng Lim (Director, R&D, Intelligent Systems Center, NTU, Collaborator)
6) Stefano Schiavon (Assistant Professor, Center for the Built Environment, Architecture, UC-Berkeley, Collaborator)
We should design indoor environments that are better than the best environment found in nature

— Ole Fanger
Building Lifecycle Assessment and SinBerBEST Innovations

Building LCA platform

- **Material Production**
 - **Innovation:** Local Lifecycle Inventory (LCI) model

- **Construction**
 - **Operation**
 - **End of Life**

- **Thrusts 1, 2, 3 & 5:** Whole building energy simulation in the tropics, e.g. BIM

- **Thrust 4:** Thermal comfort & IEQ

- **Thrust 5:** Material, design, analysis, & decision making

- **Thrust 6:** Cyber-physical Testbeds

- **Innovation:** Local repair & maintenance scheme

- **Innovation:** Evaluation matrix for overall sustainability considering environment (GWP), social (health), and economic (productivity)
Displacement Ventilation & Chilled Ceilings

Manitoba Hydro Building, Canada, by KPMB

David Brower Center, US, by Solomon/WRT
Displacement Ventilation & Chilled Ceilings

Laboratory experiments for typical U.S. interior zone office to investigate how:

1. Ratio of cooling load removed by CC over the total cooling load
2. Percentage of active ceiling area (radiant surface temperature) affect:
 i. Air stratification
 ii. Air change effectiveness

http://escholarship.org/uc/item/980931rf

Center for the Built Environment
A Testbed for Increasing the Heat Load

SinBerBEST Testbed Initiative in Collaboration with Thrust 3

- **Thrust 3**: **High Confidence Building Operating System** focus on reducing energy consumption in interior lighting by developing efficient and intelligent lighting grids using solid-state devices and natural light.

- A project between SinBerBEST & Energy Research Institute (ERI@N) started to use SinBerBEST space as a testbed for assessing visual performance metrics.
SinBerBEST Testbed – Office Environment
SinBerBEST Testbed – Office Environment

Daily sun path

10:00 am, Dec 21, 2012

Zone 2

Zone 1

Zone 2

4:00 pm, Dec 21, 2012

Zone 1
Other Testbeds (UC-Berkeley + ERI@N)

Sensor Selection and Placement for CO₂ and Temperature Fields
- Data collected includes Temp., RH, CO₂ concentration, Occupancy, & Supply airflow rate in the defined spaces.
- **Idea:** Use sparse sensor array, occupancy info., models → CO₂ & Temp fields in a networked rooms.

- 7 office spaces
- 1 discussion room
- 1 holding area + hallway
- Served by same AHU

SMPS Building, Level 4

- 12 office spaces
- 1 hallway
- Served by same AHU

SADM Building, level 4
Sensor Network Testbeds

SinBerBEST sensor network testbeds deployed at:
- SinBerBEST office space
- BCA test chambers
- ETH BubbleZERO

ETH BubbleZERO Testbed

SinBerBEST Testbed

BCA Testbed
“... of interest is the SinBerBEST's wireless sensing system ... meant to connect test labs from various sites in Singapore to a central monitoring server so that building technology researchers could share data and align research activities on facades or indoor environment quality going forward.”
Deployment Status

Deployed heterogeneous sensor networks:
- MicaZ with TinyOS
- TelosB with Contiki OS
- iMotes, IRIS

Sensing functionality:
- Temperature, light, humidity, CO₂ levels
- Example: humidity readings from TelosB

Data Stream
- Sensor data streaming from SinBerBEST testbed to Berkeley’s Sensezilla
Demo Prototype

Dashboard Interface:
- Heat map
- Network topology
- Real time sensor data
Future Extension: Data Management and Analytics Framework for Smart Buildings

Motivation:

- Building Information Model (BIM) are required for all building design submissions
- Current BIM provides building information that is mainly architectural & physical in nature without sensing and information of energy consumption.
- BIM has the potential to be a universal data aggregation platform.

Objective:

Develop a data management and analytics framework to share data from different building testbeds and to integrate with BIM.
CREST† 406 Bubble: A Testbed in Cory Hall, UC-Berkeley

†Center for Research in Energy Systems Transformation
CREST 406 Bubble
Data Connectivity in a Sensing Bubble

Objectives:
- Build a local bubble gateway
- Interface with all types of sensors/actuators in 406
- Provide Augmented Reality (AR) view/control on Android Pad
- Preliminarily implement the data-centric infrastructure with space-time and semantic searching interface

EnergyEyes app uses QR codes & real-time data flow from devices to an end-user to find energy waster

Coverage of a Sensing Bubble

Physical Server

- WiFi-DotCloud
 (sMap)

- DotCloud
 (sMap)

Data Repository

External
Web Portal
Server

Virtual Server

Serial Port or USB

- * HTTP
 sMAP

BAC/IP
Device

sMAP
Device

ZigBee
Device GW

Non-standard
Device GW

Non-standard
Port Device

* Ethernet-IP

* Ethernet-IP

* Ethernet-IP

* Ethernet-IP

* Ethernet-IP
Performance-based Engineering (PBE) for “Best” Decision of Energy-efficient & Sustainable Building Design

Objective:

Develop a framework to make the best decision for building design satisfying:

- Energy-efficiency
- Sustainability
- Safety
- Economical constraints, etc.

considering interests of stakeholders & sources of uncertainties during lifecycle.

Various interests
Uncertainties
Life cycle

Multicriteria + Probabilistic + LCA

Framework

Energy-efficient Sustainable Safe Economical :
Holistic design
Decision-Making Process:

MIVES (Model for Integration of Values for Evaluation of Sustainability)

4 steps:
- Tree Construction
- Value Function
- Weight Assignment
- Selection Amongst Alternatives

PBE-Approach to the Holistic Best Design Decision
Testbed for PBE-MIVES Approach

Example building: UCS building at UCB

Details are presented tomorrow by Dr. Hyerin Lee

Plan view of the UCS building located at UC-Berkeley campus

Lee & Mosalam, 2006

Loss Curve

Mosalam & Günay, 2011

SinBerBEST 2013
Future Extension: PBE-MIVES

- Selecting major indicators (including those for safety and health in construction activities) and corresponding weights in office building design

- Collecting data/defining probability distributions & correlations for office buildings in the tropics

- Accounting for results obtained from various testbeds, e.g. on newly developed façade systems

- Evaluating the efficiency of a newly developed technologies, e.g. novel façade systems
Thank You!

Questions? Comments?