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The Stefan Boltzmann law s T4   

is on page 1 of an optics book--- 
Something interesting  is going on ! 
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What is the best efficiency possible? When we pose this question, we are 

stepping outside the bounds of a particular subject. Questions of this kind are 

more properly the province of thermodynamics which imposes limits on the 

possible, like energy conservation and the impossible, like transferring heat from 

a cold body to a warm body without doing work.   And that is why the fusion of 

the science of light (optics) with the science of heat (thermodynamics), is where 

much of the excitement is today. During a seminar I gave some ten years ago at 

the Raman Institute in Bangalore, the distinguished astrophysicist Venkatraman 

Radhakrishnan famously asked “how come geometrical optics knows the second 

law of thermodynamics?” This provocative question from C. V. Raman’s son 

serves to frame our discussion.  



During a seminar at  the Raman Institute (Bangalore) in 2000, 

Prof. V. Radhakrishnan asked me: 
How does geometrical optics know the second law of thermodynamics? 
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A few observations suffice to establish the connection. As is well-known, the solar 

spectrum fits a black body at 5670 K (almost 10,000 degrees Fahrenheit) Now a  

black body absorbs radiation at all wavelengths, and it follows from thermodynamics 

that its spectrum (the Planck spectrum1) is uniquely specified by temperature.  The 

well-known Stefan Boltzmann law which also follows from thermodynamics relates 

temperature to radiated flux so that the solar surface flux is Φs ~ 58.6 W/mm2 while 

the measured flux at top of the earth’s atmosphere is 1.35 mW/mm2 . That the ratio, 

~ 44,000, coincides with 1/sin2 Θs where Θs is the angular subtense of the sun is 

not a coincidence but rather illustrates a deep connection between the two subjects 

(the sine law of concentration).  Nonimaging Optics is the theory of 

thermodynamically efficient optics and as such, depends more on thermodynamics 

than on optics I often tell my students to learn efficient optical design, first study the 

theory of furnaces. 

  

 



Invention of Entropy 
(The Second Law of Thermodynamics) 

• Sadi Carnot had fought with Napoleon, but by 1824 was a 
student studying physics in Paris. In that year he wrote: 

• Reflections on the Motive Power of Heat and on Machines 
fitted to Develop that Power. 

• The conservation of energy (the first law of thermodynamics) 
had not yet been discovered, heat was considered a 
conserved fluid-”caloric” 

• So ENTROPY (the second law of thermodynamics) was 
discovered first. 

• A discovery way more significant than all of Napoleon’s 
conquests! 
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Invention of the Second Law of Thermodynamics by Sadi Carnot  
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TdS = dE + PdV  
is arguably the most important equation in Science 

If we were asked to predict what currently accepted  

principle would be valid 1,000 years from now, 

The Second Law would be a good bet (Sean Carroll) 

From this we can derive entropic forces  F = T grad S 

The S-B radiation law (const. T^4) 

Information theory (Shannon, Gabor) 

Accelerated expansion of the Universe 

Even Gravity! 

And much more modestly---- 

The design of thermodynamically efficient optics  
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The second law of Thermodynamics: 

 The invention of ENTROPY at the time of Carnot (1824), folks considered heat  

as a well-defined function 𝑄(𝑇, 𝑉) for example and called it “Caloric” which was 

conserved but it’s not. 𝑑𝑄 is an example of a non-perfect differential, 

Take 𝑑𝑄 = 𝐴𝑑𝑇 + 𝐵𝑑𝑉 which is not a perfect differential. If it were, then 
𝜕2𝑄

𝜕𝑇𝜕𝑉
=

𝜕𝐴

𝜕𝑉
=

𝜕𝐵

𝜕𝑇
 but this needs not be true. This can be extended to more than two 

variables.  

Let’s generalize 𝑑𝑄 = 𝑋𝑑𝑥 + 𝑌𝑑𝑦 + 𝑍𝑑𝑧 where 𝑋, 𝑌, 𝑍 are functions of 𝑥, 𝑦, 𝑧 and 

𝑥, 𝑦, 𝑧 can be temperature, volume etc. 

Notice, if dQ were a perfect differential, say 𝑑𝜎, then 𝑋 =
𝜕𝜎

𝜕𝑥
, 𝑌 =

𝜕𝜎

𝜕𝑦
, 𝑍 =

𝜕𝜎

𝜕𝑧
 𝑎𝑛𝑑

𝜕𝑌

𝜕𝑧
=

𝜕𝑍

𝜕𝑦
,
𝜕𝑍

𝜕𝑥
=

𝜕𝑋

𝜕𝑧
 need not be true(these are called integrability conditions). 

But sometimes, there exists an integrating factor, say 𝜏(𝑥, 𝑦, 𝑧) so 
𝑑𝑄

𝜏
= 𝑑𝜎 =

𝜕𝜎

𝜕𝑥
𝑑𝑥 +

𝜕𝜎

𝜕𝑦
𝑑𝑦 +

𝜕𝜎

𝜕𝑧
𝑑𝑧. The point is, for Q, there is such a factor and it’s called 

temperature. Due to Carrathodory 100 years ago! Math.Ann.67, 355(1909) and 
𝑑𝑄

𝑇
= 𝑑𝑆,𝑆 is the entropy or 𝑇𝑑𝑆 = 𝑑𝑄. 
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The proof is based on the impossibility of certain conditions, for example heat flows 

from a cold body to a warm body( free cooling) 𝑑𝑄 is 0 but I cool while you warm up. 

Other impossible conditions are converting heat to work with 100% efficiency and 

so on. (𝑑𝑄 = 0 is called adiabatic). 

The proof goes like this: we know 𝑑𝑄 is not a perfect differential. The adiabatic 

equation: 𝑑𝑄 = 0 = 𝑋𝑑𝑥 + 𝑌𝑑𝑦 + 𝑍𝑑𝑧, the points near (𝑥, 𝑦, 𝑧) cannot fill a volume, if 

they did, all neighboring points are accessible, they don’t just lie on a curve because 

𝑋𝑑𝑥 + 𝑌𝑑𝑦 + 𝑍𝑑𝑧 = 0 is a tangent plane, so connecting the tangent plane that is a 

surface 𝜎 𝑥, 𝑦, 𝑧  𝑠𝑢𝑐ℎ 𝑡ℎ𝑒 𝜎 =   𝑐𝑜𝑛𝑠𝑡, passes through point (𝑥, 𝑦, 𝑧). 
Then since 𝑑𝑄 = 0 confines points to the surface 𝑑𝜎 𝑥, 𝑦, 𝑧 = 0 

𝑑𝑄 = 𝜏 𝑥, 𝑦, 𝑧 𝑑𝜎 𝑥, 𝑦, 𝑧  

And 𝜏 is called 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟. 
For thermodynamics 𝜏 is the temperature 𝑇 and 𝜎 is the entropy 𝑆 

𝑑𝑄 = 𝑇(𝑥, 𝑦, 𝑧)𝑑𝑆 

make them        

𝑇 = 𝜏
𝑑𝜎

𝑑𝑥
=

𝑋

𝜕𝑆
𝜕𝑥

=
𝑌

𝜕𝑆
𝜕𝑦

=
𝑍

𝜕𝑆
𝜕𝑧

 

The differential of the heat, 𝑑𝑄 for an infinitesimal quasi-static change when divided 

by the absolute 𝑇 is a perfect differential 𝑑𝑆 of the entropy function. 
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Example, connect them to information by Shannon’s theorem  

𝑆 = −𝑘𝐵 𝑃𝑛 log𝑃𝑛
𝑛

 

Example, consider a string of bit 0, 1 such a string can carry information, say 

1,0,0,0,1,1 etc. can represent all the letters of any alphabet hence any book 

content etc. Suppose we know what each bit is, the 𝑃𝑛 = 1, log𝑃𝑛 = 0 𝑎𝑛𝑑 𝑆 =
0. Perfect knowledge 

Suppose we are clueless- Like tossing a coin, 𝑃𝑛 = 1/2 all 𝑛 and  

𝑆 = −𝑘𝐵 
1

2
log

1

2
𝑛

= 𝑘𝐵
log 2

2
  𝑁 = 𝑘𝐵0.346𝑁 

 𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠, 𝑘𝐵 = 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛′𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≈ 1.38 × 10−23(𝑀𝐾𝑆 𝑢𝑛𝑖𝑡𝑠) 
 



Nonimaging Optics 15 

  

𝑑2𝑠 = 𝑑2𝑥 + 𝑑2𝑦 + 𝑑2𝑧 

𝑑2𝑠 = 𝑑2𝑥 + 𝑑2𝑦 + 1 𝑑2𝑧 

Define 𝑥 = 𝑑𝑥/𝑑𝑧,𝑦 = 𝑑𝑦/𝑑𝑧 

According to Fermat Principle 𝛿∫  𝑛 𝑑𝑠 = 0   

𝛿  𝑛 𝑑2𝑥 + 𝑑2𝑦 + 1 𝑑𝑧
𝑃2

𝑃1

= 0 

Define Lagrangian 𝐿 = 𝑛 𝑥, 𝑦, 𝑧 𝑑2𝑥 + 𝑑2𝑦 + 1   

Then 
𝜕𝐿

𝜕𝑥 
=

𝑛𝑥 

𝑑2𝑥 +𝑑2𝑦 +1
= 𝑝𝑥 

Then 
𝜕𝐿

𝜕𝑦 
=

𝑛𝑦 

𝑑2𝑥 +𝑑2𝑦 +1
= 𝑝𝑦 

For a system that conserves its Hamiltonian, similar to Lagrangian equation: 

𝑑

𝑑𝑧

𝜕𝐿

𝜕𝑥 
−
𝜕𝐿

𝜕𝑥
= 0, 

𝑝𝑥 =
𝜕𝐿

𝜕𝑥
 

Therefore  
𝜕𝐿

𝜕𝑥 
= 𝑝𝑥 ,

𝜕𝐿

𝜕𝑦 
= 𝑝𝑦, 𝑝𝑥 =

𝜕𝐿

𝜕𝑥
, 𝑝𝑦 =

𝜕𝐿

𝜕𝑦
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The Hamiltonian of the system is: 

𝐻 = 𝑝𝑥𝑥 + 𝑝𝑦𝑦 − 𝐿 𝑥, 𝑦, 𝑥 , 𝑦  

𝑑𝐻 = 𝑝𝑥 𝑑𝑥 + 𝑑𝑝𝑥 𝑥 + 𝑝𝑦𝑑𝑦 + 𝑑𝑝𝑦𝑦 −
𝜕𝐿

𝜕𝑥
𝑑𝑥 +

𝜕𝐿

𝜕𝑥 
𝑑𝑥 +

𝜕𝐿

𝜕𝑦
𝑑𝑦 +

𝜕𝐿

𝜕𝑦 
𝑑𝑦 

= −𝑝 𝑥𝑑𝑥 + 𝑥 𝑑𝑝𝑥 − 𝑝 𝑦𝑑𝑦 + 𝑦 𝑑𝑝𝑦 

𝜕𝐻

𝜕𝑥
= −𝑝 𝑥,

𝜕𝐻

𝜕𝑦
= −𝑝 𝑦 ,

𝜕𝐻

𝜕𝑝𝑥
= 𝑥 ,

𝜕𝐻

𝜕𝑝𝑦
= 𝑦  

𝜕𝑝 𝑥
𝜕𝑝𝑥

= −
𝜕𝐻

𝜕𝑝𝑥

𝜕𝐻

𝜕𝑥
=
𝜕𝐻

𝜕𝑥

𝜕𝐻

𝜕𝑝𝑥
=
𝜕𝑥 

𝜕𝑥
 

 

Define a four vector field 𝑊 = 𝑥 , 𝑝 𝑥, 𝑦 , 𝑝 𝑦  

then the 4 dimensional divergence of 𝑊 is 0. 
If we use W on a closed surface 

𝜎(𝑥, 𝑃𝑥, 𝑦, 𝑃𝑦) of a four space 𝑣(𝑥, 𝑃𝑥, 𝑦, 𝑃𝑦), 

then the incremental volume along 𝑑𝑧 

covered by such a surface is 𝑑𝑉 = ∫ 𝑊𝑑𝑧𝑑𝜎
𝜎

 

According to Gauss’s theorem,∫ 𝑊𝑑𝜎
𝜎

=

∫ 𝐷𝑖𝑣 𝑊 𝑑𝑣
𝑣

= 0 , therefore the enclosed 

volume 𝑑𝑉 = 0.∫ 𝑑𝑥𝑑𝑦𝑑𝑝𝑥𝑑𝑝𝑦 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝜎
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Limits to Concentration 

• from l max sun ~ 0.5 m  

  we measure Tsun ~ 6000° (5670°) 

 Without actually going to the Sun!  

• Then from s T4 - solar surface flux~ 58.6 W/mm2 

– The solar constant  ~ 1.35 mW/mm2  

– The second law of thermodynamics 

– C max ~ 44,000 

– Coincidentally, C max = 1/sin2q 

– This is evidence of a deep connection to optics 



• If one were to ask the proverbial “man on the street” for a 
suggestion of how one might attain the highest possible level 
of concentration of, say solar flux a plausible response would 
be to use a good astronomical telescope, perhaps the 200 inch 
telescope on Mt. Palomar, or whatever one’s favorite telescope 
might be. 

 

 *  Of course such an experiment had better remain in the realm of 
imagination only, since beginning astronomers are admonished never to 
point their telescope at the sun or risk catastrophic consequences to the 
instrument.  

 

• But … 

 Nonimaging Optics 19 

Imaging Devices and Their Limitations 



• Concentration limit 

  sin22f /4sin2q 
–  f: rim angle of the telescope  

• Best concentration achieved  

 1/4sin2q  when f = 450 

• Falls short of the fundamental limit 

by a factor 4!  

– Now factors of 4 are significant in 

technology (and many other forms of human 

endeavor) 
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Concentration Limit of a Telescope 
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Concentration Limit in 2-D Cases 

• Entirely similar considerations can be applied to 2-D 

or trough concentrators.  

 

• A straightforward generalization to a strip absorber 

rather than a disk absorber gives a limit for say, a 

parabolic trough of sin2f /2sinq  

 

• Upper limit: 1//2sinq , for rim angle f = 450.  
– This would be a useful configuration for a photo-voltaic concentrator, 

with the strip consisting of solar cells.  
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•A more useful geometry for a parabolic trough thermal 

concentrator is a tubular receiver.  

 
• Concentration relation  

 sinf /psinq  

 

• Maximum value  

  1/psinq at 900 rim angle. 

 

• Falls short of the fundamental 

limit by a factor p !  

 



Nonimaging Concentrators 

• It was the desire to bridge the gap between the 

levels of concentration achieved by common 

imaging devices, and the sine law of 

concentration limit that motivated the 

invention of nonimaging optics.  
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Failure of conventional optics 
FAB << FBA where FAB is the probability of 

radiation starting at A reaching B--- etc 
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First and Second Law of Thermodynamics 

Nonimaging Optics  is the theory of maximal 

efficiency radiative transfer 

It is axiomatic and algorithmic based 

 

As such, the subject depends much more on 

thermodynamics than on optics 

 

To learn efficient optical design, first study the 

theory of furnaces. 
` 



  THE THEORY OF FURNACES 

B1 

B2 

B3 

B1 

B2 

B3 

B4 

P 

Q 

Q’ 

P’ 

(a) (b) 

Radiative transfer between walls in an enclosure  
 

HOTTEL STRINGS 
Michael F. Modest, Radiative Heat Transfer, Academic Press 2003 

 

Hoyt C. Hottel, 1954, Radiant-Heat Transmission,  Chapter 4 in  

William H. McAdams (ed.), Heat Transmission, 3rd ed. McGRAW-HILL 

  

 
 



Strings 3-walls 

1 

2 

3 

qij = AiPij 

 

Pii = 0 

P12 + P13 = 1 

P21 + P23 = 1  3 Eqs  

P31 + P32 = 1 

 
Ai Pij = Aj Pji  3 Eqs 

P12 = (A1 + A2 – A3)/(2A1) 

 

P13 = (A1 + A3 – A2)/(2A1) 

 

P23 = (A2 + A3 – A1)/(2A2) 

 

 
 



Strings 4-walls 

1 

2 

3 

4 5 
6 

P14 = [(A5 + A6) – (A2 + A3)]/(2A1) 
P23 = [(A5 + A6) – (A1 + A4)]/(2A2) 

 

P12 + P13 + P14 = 1 
P21 + P23 + P24 = 1 

 



Limit to Concentration 

P23 = [(A5 + A6) – (A1 + A4)]/(2A2)S 

P23= sin(q) as A3 goes to infinity 

• This rotates for symmetric systems to sin 2(q) 

 

 

1 

2 

3 

4 5 
6 



Fermat’s Principle for Rays and Strings 
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• What are strings?  



String Method 

• We explain what strings are by way of 

example.  

• We will proceed to solve the problem of 

attaining the sine law limit of concentration for 

the simplest case, that of a flat absorber.  
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String Method Example: CPC 

• We loop one end of  a 

“string” to a “rod” tilted 

at angle θ to the aperture 

AA’ and tie the other end 

to the edge of the exit 

aperture B’.  

• Holding the length fixed, 

we trace out a reflector 

profile as the string 

moves from C  to A’. 
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String Method Example: CPC 
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 

2D concentrator with acceptance (half) angle  

absorbing surface 

string 



String Method Example: CPC 
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String Method Example: CPC 
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String Method Example: CPC 
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String Method Example: CPC 
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String Method Example: CPC 
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stop here, because slope 

becomes infinite 



String Method Example: CPC 
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String Method Example: CPC 
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B B’ 

A’ A 

C 

 

Compound Parabolic 

Concentrator (CPC) 

(tilted parabola sections) 



String Method Example: CPC 
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sinA'AACBB'

A'BAB'

Α'ΒΒΒ'ΑCΑΒ'







'sin' BBAA  





2sin

12
)

BB'

AA'
(C(cone)

sin

1

BB'

AA'
C





sine law of concentration limit! 



String Method Example: CPC 

• The 2-D CPC is an ideal concentrator, i.e., it 

works perfectly for all rays within the 

acceptance angle q,  

• Rotating the profile about the axis of 

symmetry gives the 3-D CPC 

• The 3-D CPC is very close to ideal.  
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String Method Example: CPC 

• Notice that we have kept the optical length of 

the string fixed. 

•  For media with varying index of refraction 

(n), the physical length is multiplied by n.  

 

• The string construction is very versatile and 

can be applied to any convex (or at least non-

concave) absorber… 
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I am frequently asked- Can this possibly work? 
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String Method Example: Tubular Absorber 

• String construction for a tubular absorber as would be appropriate 

for a solar thermal concentrator.  

Nonimaging Optics 45 

' 1

2 sin

AA
C

ap 
 

String method: ∫ 𝑛𝑑𝑙
𝐷

𝑤
= 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

AC+AB’+B’D=A’B+BD+2𝜋𝑎 

AA’ sin𝜃=2𝜋a 



String Method Example: Collimator for a Tubular 
Light Source 

46 

 

tubular 

light source 

R 
kind of “involute” 

of the circle 

étendue 

conserved  

  ideal design! 
2pR/sin 

Nonimaging Optics 



Solar Energy Applications 47 

Non-imaging Concentrator  
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S = k (½ log2) N 



1 

radiation  

source 2  

aperture 

3 

 absorber 

The general concentrator problem 

Concentration C is defined as A2/A3 

 

What is the “best” design? 



1 

radiation  

source 2  

aperture 

3 

 absorber 

Characteristics of an optimal concentrator design 

Let Source be maintained at T1 (sun) 

Then T3 will reach T1 ↔ P31 = 1 

Proof: q13=sT1
4A1P13 = sT1

4A3P31  

But q3total=sT3
4A3  ≥ q13 at steady state 

T3 ≤ T1 (second law)→P31=1 ↔ T3=T1 
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1st law efficiency: energy conservation  

𝑞12 = 𝑞13 ⇒ 𝑃12 = 𝑃13 

2nd law efficiency:  

𝐴1𝑃12 = 𝐴1𝑃13, 𝑏𝑢𝑡 𝐴1𝑃13 = 𝐴3𝑃31 

The concentration ratio C: 

𝐶 =
𝐴2
𝐴3

 

𝐴3 =
𝐴1𝑃12
𝑃31

 

The maximum concentration ratio 

𝐶𝑚𝑎𝑥  corresponds to minimum  𝐴3 

C is maximum IFF 𝑃31 = 1 

Recall that for maximum thermodynamics 

efficiency 

𝐴1𝑃12 = 𝐴1𝑃13 = 𝐴3 

Then 𝐴2𝑃21 = 𝐴3 

𝐶𝑚𝑎𝑥 = 1/𝑃21 

1 

radiation  

source 2  

aperture 

3 

 absorber 



Hospital in Gurgaon, India DEC 2011 

Roland,  I hope Shanghai went well Hit 200C yesterday with just 330W DNI.  Gary D. Conley~Ancora Imparo  

       www.b2uSolar.com 

http://www.b2usolar.com/
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𝐿𝑜𝑛𝑔 𝑠𝑡𝑟𝑖𝑛𝑔 − 𝑆ℎ𝑜𝑟𝑡 𝑆𝑡𝑟𝑖𝑛𝑔 = 𝐿2𝑠𝑖𝑛𝜃 

𝑃21 = 𝑠𝑖𝑛𝜃 

 

𝑑 

𝐿1 

𝐿2 

𝐿2 
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So that 𝐶𝑚𝑎𝑥 = 1/𝑠𝑖𝑛𝜃 , 
Notice 𝜃 is the maximum angle of radiation incident on 𝐴2 

Generalize to 3-dimensional, rotational symmetry. 

𝑃21 =
𝑙𝑜𝑛𝑔 𝑠𝑡𝑟𝑖𝑛𝑔 − 𝑠ℎ𝑜𝑟𝑡 𝑠𝑡𝑟𝑖𝑛𝑔

𝐿2

2

= 𝑠𝑖𝑛𝜃 2 

𝐶𝑚𝑎𝑥 =
1

𝑠𝑖𝑛𝜃

2

 

An alternative way to get the sine law is to consider the angular momentum 

with respect to the axis of symmetry. 

𝐽 = 𝑟 × 𝑃 

𝑃 = 𝑛 𝐿,𝑀,𝑁  

𝐽𝑧 is conserved 
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Designing the thermodynamically efficient concentrator 

We have used “strings” to find the limit of concentration, if we can use the 

strings to design the optical system, we have a chance of meeting the limit. 

𝜃1/𝜃2 angle transformer 

Etendue conservation 𝐿1𝑎 = 𝐿2𝑏, 𝐿1 = sinθ1, 𝐿2 = sinθ2, 𝑎 sin 𝜃1 = 𝑏 sinθ2 

X 

L 
L1 

a/2 

X 

L L2 

b/2 
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q1 

asin(q1) Straight line 

bsin(q2) 

q2 
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String method deconstructed 
• 1. Choose source  

• 2.Choose aperture 

• 3. Draw strings  

• 4. Work out 𝑃12𝐴1 

5. 𝑃12𝐴1 =
1

2
 𝑙𝑜𝑛𝑔 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 −  𝑠ℎ𝑜𝑟𝑡 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 = 𝐴3 = 0.55𝐴1 = 0.12𝐴1 

6. Fit 𝐴3 between extends strings => 2 degrees of freedom, Note that  

𝐴3 = 𝑐𝑐′ =
1

2
[(𝑎𝑏′ + 𝑎′𝑏 − 𝑎𝑏 + 𝑎′𝑏′ ] 

7. Connect the strings. 
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Index of Refraction (n) 

  

Recall 𝐶𝑚𝑎𝑥 = 𝑛/ sin 𝜃, so if 𝜃 =
𝜋

2
, we should be able to 

concentration by 𝑛 (or 𝑛2in three dimension). How? 

Consider the air/dielectric interface. 

𝛼 

𝛽 
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By momentum conservation,  

cos 𝛼 = 𝑛 cos𝛽 

then  

sin 𝜃1 = sin 𝜃2 

(𝜃1 =
𝜋

2
− 𝛼, 𝜃2 =

𝜋

2
− 𝛽) 

So if 𝜃1 = 𝜋/2, 𝜃2 = arc sin(1/𝑛) the critical angle. 

 

Solution: design an angle transformer with 𝜃1 = 𝜃𝑐,𝜃2 = 𝜋/2 

 

Then 𝐶 =
1

sin 𝜃𝑐
= 𝑛 (or 𝑛2 for three dimensions) 

a 

b 

Air (n=1) 

Dielectric (n) 
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q1 

2qc 

q1
' 

q2 

How to design TIR concentrators 

 

sin 𝜃1 = 𝑛 sin 𝜃1′(inside the medium) 

 

TIR condition 𝜃1
′ + 𝜃2 + 2𝜃𝑐 = 𝜋,𝜃2 = 𝜋 − 2𝜃𝑐 − 𝜃1′(or less) 
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Lens-mirror  

 

String ∫ 𝑛𝑑𝑙 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
 

𝐴𝐵′ + 𝐵′𝐵 = 𝐶𝐴′ + 𝐴′𝐵  

(𝐴𝐵′𝑎𝑛𝑑 𝐴′𝐵  𝑎𝑟𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒) 
𝐵′𝐵 = 𝐶𝐴′ = 𝐴𝐴′ sin 𝜃 

P 

A’ 

B’ 

A 

B 

C 

q 
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Some examples: n=1.5,𝜃𝑐 = 42˚ 
 

𝜃2 = 𝜋/2(90˚),𝜃1
′ ≤ 6˚, 𝜃1 < 9˚ 

 

𝜃1 = 30˚, 𝜃1
′ = 19.5˚,𝜃2 = 96˚ − 19.5˚ = 76.5˚ 

 

𝐶 =
sin 𝜃2
sin 𝜃1

= 0.97
1

sin 𝜃1
′ = 0.97

𝑛

sin 𝜃1
= 0.97 𝐶𝑚𝑎𝑥 = 2.9 

 

So an 𝑓/1 lens + TIR secondary = 𝑓# =
0.5

1.5∗.97
= 0.34 That’s really fast. 



A 

A’ 

B B’ 

parabola, f at B 

circle, center at B 

B 

B’ 

parabola, f at B 

circle, center at B’ 

parabola, f at B’ 

O 

Examples 



Analogy of Fluid Dynamics and Optics 
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fluid dynamics 

 

optics 

phase space  

(twice the dimensions of 

ordinary space ) 

 

general etendue 

 

positions  positions  

momenta 

 

directions of light rays 

multiplied by the index of 

refraction of the medium 

 

incompressible fluid  volume in “phase space” is 

conserved 

 



Imaging in Phase Space 

• Example: points on a line. 
– An imaging system is required to 

map those points on another line, 

called the image, without 

scrambling the points. 

• In phase space 

– Each point becomes a vertical 

line and the system is required 

to faithfully map line onto 

line.  
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Edge-ray Principle 

• Consider only the boundary 

or edge of all the rays.  

• All we require is that the 

boundary is transported 

from the source to the target. 
– The interior rays will come along . They 

cannot “leak out” because were they to 

cross the boundary they would first 

become the boundary, and it is the 

boundary that is being transported. 
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Edge-ray Principle 

• It is very much like transporting a container of 

an incompressible fluid, say water.  

• The volume of container of rays is unchanged 

in the process.  

– conservation of phase space volume.   

• The fact that elements inside the container mix 

or the container itself is deformed is of no 

consequence.  
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Edge-ray Principle 

• To carry the analogy a bit further, suppose one 

were faced with the task of transporting a 

vessel (the volume in phase-space) filled with 

alphabet blocks spelling out a message. Then 

one would have to take care not to shake the 

container and thereby scramble the blocks.  

• But if one merely needs to transport the blocks 

without regard to the message, the task is 

much easier.  
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Edge-ray Principle 

• This is the key idea of nonimaging optics 

• This  leads to one of the most useful 

algorithms of nonimaging Optics.  

• We shall see that transporting the edges only, 

without regards to interior order allows 

attainment of the sine law of concentration 

limit. 
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Flowline Method 
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Flowline Method 

73 Nonimaging Optics 

Then ∫ 𝐽      𝑑𝐴  is conserved => 𝐷𝑖𝑣 𝐽 = 0 

Design principle: placing the reflector 

along the lines of 𝐽  does not disturb the 

flow.  

 

This proposal, originally a conjecture is 

true for 2-D designs and for some 3-D 

designs of sufficient symmetry, as usual 

we teach by example: we start with 

Lambertian (black body) source, find the 

flow lines, examine the resulting designs 

and their applications. 

 

Sphere: flow line are radial, design 

works in 2D and 3D. 

 

Line(disc):How to find the flow lines 



Flowline Method 
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Flowline Method 
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Let 𝑛 = (𝐿,𝑀,𝑁) unit vector, then, recall 

the Jacobean 𝑑𝐿 𝑑𝑀 = 𝑁𝑑Ω,𝑑Ω =

𝑑𝐴 𝑜𝑛 𝑎 𝑢𝑛𝑖𝑡 𝑠𝑝ℎ𝑒𝑟𝑒, 𝑑𝐴 𝑧 = 𝑁𝑑𝐴 = 𝑑𝐿𝑑𝑀 

So in general 𝐽 = ∫ 𝑛2𝑛 𝑑Ω, for the time 

being, keep 𝑛 = 1. 

So we can think of the flow line as the 

average direction of 𝐽 , works for a sphere. 

Try for a disc (line). 
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It is a property of the hyperbola that the angle to the forci (A,B) are equal, 

Consider 

Flow line designs 



How to turn a slow lens to a fast lens - flow 
line 
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Fermat 𝐵𝐶 + 𝐵𝐹 = 𝐵′𝐹 = 𝐵𝐹′ 
Hyperbola 𝐵′𝐹 − 𝐵𝐹 = 𝐴𝐹 − 𝐴′𝐹 = 𝐴𝐴′ 
𝐵𝐶 = 𝐴𝐴′ but 𝐵𝐶 = 𝐵𝐵′𝑠𝑖𝑛𝜃 

𝐴𝐴′ = 𝐵𝐵′𝑠𝑖𝑛𝜃 



Highlight Project—Solar Thermal 
• UC Merced has developed the External Compound Parabolic 

Concentrator (XCPC) 

• XCPC features include: 

– Non-tracking design 

– 50% thermal efficiency at 200°C 

– Installation flexibility 

– Performs well in hazy conditions 

• Displaces natural gas consumption and reduces emissions 

• Targets commercial applications such as double-effect 
absorption cooling, boiler preheating, dehydration, sterilization, 
desalination and steam extraction 

 



UC Merced 250°C Thermal Test Loop 





Testing 
• Efficiency (80 to 200 °C) 

• Optical Efficiency (Ambient temperature) 

• Acceptance Angle 

• Time Constant 

• Stagnation Test 

 



Acceptance Angle 



Thermodynamically Efficient Solar 
Cooling 

• Solar Cooling 

– Using energy from the sun to provide space cooling / refrigeration 
– Well matched supply/load (i.e. High cooling demand on sunny days) 
– If roof deployed, energy that would heat up building is diverted for 

cooling 

• Barriers 

– Efficient cooling machines (double effect absorption chillers) require 
high temperatures around 180 C 

– Tracking collectors are problematic 
– Absorption chillers do not respond well to natural variability of solar 

insolation 

• Solution 

– Gas/Solar hybrid absorption chillers 
– Development of new high temperature, fixed solar collector at UC 

Merced 



 



XCPC 
• Non-imaging optics: 

– External Compound 
Parabolic Concentrator 
(XCPC) 

– Non-tracking 

– Thermodynamically 
efficient 

– Collects diffuse sunlight 

– East-West and  
North-South designs 



 



Performance Comparison 



Solar Cooling at UC Merced 

• Collectors 

– 160 North/South XCPCs 

– Concentration ratio ~ 1.18 

– 50 m2 inlet aperture area 
 

• Chiller (BROAD Manufacturing) 

– 6 ton (23 kW) Lithium Bromide Absorption Chiller 

– Double effect (COP ~ 1.1) 

– Hybrid solar / natural gas powered 



XCPC Array at UC Merced 





 



 



Power Output of Solar Cooling 
2011 



Power Output of Solar Cooling 2012 



In Summary 
• XCPC 

– Fixed, high temperature solar thermal collector 

– High thermodynamic efficiency 

– Collects diffuse light 

– Flexible installation 

• UC Merced Solar Cooling Project 

– 160 North/South XCPCs (~50 m2) 

– 6 ton (23 kW) Li-Br Double Effect Absorption chiller 

– Natural gas-powered chiller during system warm-up 

– Direct solar powered cooling for about 6 hours 

– Extended solar cooling for about 2 hours 

– Average Daily Solar COP of about 0.38 



 





XCPC Applications 
• Membrane 

Distillation 

• Heat Driven 
Industrial Process 

• Technology feasibility 

• Economic 
Competitiveness 

• Market Potential 

• Time to 
commercialization 

 

• Absorption Chillers 

• Adsorption Chillers 

• Desiccant Cooling 

• Heat Driven Electrical 
Power Generation 

• Steam Cycle Based 
Products 

• Stirling Cycle Based 
Products 

• Heat Driven Water 
Treatment Technology 

 



Delivering BTUs from the Sun 

The Best Use of our Sun 

nitin.parekh@b2usolar.com 
tammy.mcclure@b2usolar.c
om 
www.b2usolar.com 

http://www.b2usolar.com/


Demonstrated Performance 

10kW test loop NASA/AMES 

10kW Array Gas Technology Institute 

Conceptual Testing 
SolFocus & UC Merced 


