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LYY huStefan.Boltzmann law ¢ T4
is on page 1 of an optics book---
Something interesting is going on !

NONIMAGING

OPTICS

ROLAND WINSTON
JUAN C.MINANDO
PABLO BENITE?Z

With contributfions by
Narkis Shatz and John C. Bortz




What is the best efficiency possible? When we pose this question, we are
stepping outside the bounds of a particular subject. Questions of this kind are
more properly the province of thermodynamics which imposes limits on the
possible, like energy conservation and the impossible, like transferring heat from
a cold body to a warm body without doing work. And that is why the fusion of
the science of light (optics) with the science of heat (thermodynamics), is where
much of the excitement is today. During a seminar | gave some ten years ago at
the Raman Institute in Bangalore, the distinguished astrophysicist Venkatraman
Radhakrishnan famously asked “how come geometrical optics knows the second
law of thermodynamics?” This provocative question from C. V. Raman’s son

serves to frame our discussion.

Nonimaging Optics 5




During a seminar at the Raman Institute (Bangalore) in 2000,

Prof. V. Radhakrishnan asked me:
How does geometrical optics know the second law of thermodynamics?

Pl
’s -4\ ‘{
{ i
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A few observations suffice to establish the connection. As is well-known, the solar
spectrum fits a black body at 5670 K (almost 10,000 degrees Fahrenheit) Now a
black body absorbs radiation at all wavelengths, and it follows from thermodynamics
that its spectrum (the Planck spectrum?) is uniquely specified by temperature. The
well-known Stefan Boltzmann law which also follows from thermodynamics relates
temperature to radiated flux so that the solar surface flux is ®s ~ 58.6 W/mm? while
the measured flux at top of the earth’s atmosphere is 1.35 mW/mm? . That the ratio,
~ 44,000, coincides with 1/sin? ©s where Os is the angular subtense of the sun is
not a coincidence but rather illustrates a deep connection between the two subjects
(the sine law of concentration). Nonimaging Optics is the theory of
thermodynamically efficient optics and as such, depends more on thermodynamics
than on optics | often tell my students to learn efficient optical design, first study the
theory of furnaces.

Nonimaging Optics 7



v lovention of Entropy

(The Second Law of Thermodynamics)

Sadi Carnot had fought with Napoleon, but by 1824 was a
student studying physics in Paris. In that year he wrote:

Reflections on the Motive Power of Heat and on Machines
fitted to Develop that Power.

The conservation of energy (the first law of thermodynamics)
had not yet been discovered, heat was considered a
conserved fluid-“caloric”

So ENTROPY (the second law of thermodynamics) was
discovered first.

A discovery way more significant than all of Napoleon’s
conquests!

Nonimaging Optics



UCMERCED

Map representing the losses over time of French army tmorps Jun’p the Russian campaign, 1812-1813.
Constructed by Charfes Joseph Minard, Inspector General of Public Works retired.
Paris, 20 November 1869

The number of men present at any grven time is represented by the width of the grey line; ome mm. indicates ten thousand men,
Figures are also wntten besides the fines. Grey designates men moving into Russia ; black,, for those leaving. Sources for the data
are the works of messrs. Thiers, Segur, Fezensac, Chambray and the unpublished diary of Jacob. who became an Anny Pharmacist
on 28 October. In order to visualize the army's losses more clearfy, | have drawn this as if the units under prince Jerome and
Marshall Davoust (m?romdfy seperated from the main body to go to Minsk and Mikjlow, which then joined up with the main
armry again) had stayed with the army throughout.
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Editor s note: dates & temperatures are only referenced for the retreat from Moscow
© 2001, 00T Inc. All righes reserved,

Figure 58, Minard 5 map of Napoleon s Russian canpaign.
This grapbic bas been translated from French to Euglish and modified to most ¢ffectively display the temperature data.
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nvention of the Second Law of Thermodynamics by Sadi Carnot
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TdS = dE + PdV

IS arguably the most important equation in Science

If we were asked to predict what currently accepted
principle would be valid 1,000 years from now,

The Second Law would be a good bet (Sean Carroll)
From this we can derive entropic forces F=T grad S
The S-B radiation law (const. T™4)

Information theory (Shannon, Gabor)

Accelerated expansion of the Universe

Even Gravity!

And much more modestly----

The design of thermodynamically efficient optics

Nonimaging Optics 11



The second law of Thermodynamics:

The invention of ENTROPY at the time of Carnot (1824), folks considered heat
as a well-defined function Q (T, V) for example and called it “Caloric” which was
conserved but it's not. dQ is an example of a non-perfect differential,

Take dQ = AdT + BdV which is not a perfect differential. If it were, then

2
0°Q _ oA _ 0B but this needs not be true. This can be extended to more than two
aTovV ~ 9V aT

variables.
Let’s generalize dQ = Xdx + Ydy + Zdz where X,Y, Z are functions of x, y, z and
X,y,z can be temperature, volume etc.

)

Notice, if dQ were a perfect differential, say do, then X = —z Y = @,Z =

d ady
do oy 4z 9z  dX . . .
— and — = —,— = — need not be true(these are called integrability conditions).
0z 0z dy 0x 0z

But sometimes, there exists an integrating factor, say t(x,y, z) so %Q =do =

Z—de + g—;dy + %dz. The point is, for Q, there is such a factor and it’s called

temperature. Due to Carrathodory 100 years ago! Math.Ann.67, 355(1909) and
dTQ = dS,S is the entropy or TdS = dQ.

Nonimaging Optics 12



The proof is based on the impossibility of certain conditions, for example heat flows
from a cold body to a warm body( free cooling) dQ is O but I cool while you warm up.
Other impossible conditions are converting heat to work with 100% efficiency and
so on. (dQ = 0 is called adiabatic).
The proof goes like this: we know dQ is not a perfect differential. The adiabatic
equation: dQ = 0 = Xdx + Ydy + Zdz, the points near (x, y, z) cannot fill a volume, if
they did, all neighboring points are accessible, they don't just lie on a curve because
Xdx +Ydy + Zdz = 0 is a tangent plane, so connecting the tangent plane that is a
surface o(x,y, z) such the 0 = const, passes through point (x, y, z).
Then since dQ = 0 confines points to the surface do(x,y,z) =0
dQ = t1(x,y,z)do(x,y,z)
And t is called integrating factor.
For thermodynamics t is the temperature T and o is the entropy S
dQ =T(x,y,z)dS

make them
do X Y Z
dx d0S 0S 0S

dx dy 0z
The differential of the heat, dQ for an infinitesimal quasi-static change when divided
by the absolute T is a perfect differential dS of the entropy function.

T=r1

Nonimaging Optics 13



Example, connect them to information by Shannon’s theorem
S =—kpg Z P,log P,
n

Example, consider a string of bit 0, 1 such a string can carry information, say
1,0,0,0,1,1 etc. can represent all the letters of any alphabet hence any book
content etc. Suppose we know what each bitis, the B, = 1,logP, = 0and S =
0. Perfect knowledge

Suppose we are clueless- Like tossing a coin, P, = 1/2 all n and

1. 1 log 2
S = —szElogE = ky—— N = ks0.346N
n

N = number of bits, kg = Boltzmann's constant =~ 1.38 x 10723(MKS units)

Nonimaging Optics 14



Define x = dx/dz,y = dy/dz

d*s = d*x + d*y + d*z
d’s = (d?x + d*y + 1)d?*z

According to Fermat Principle §[ nds = 0

)
S| ny(d2x+d2y+1)dz=0

Py

Define Lagrangian L = n(x, y, z)y/(d2x + d?y + 1)

oL nx
Then Pyl \/(d2x+c'123'/+1) = DPx
Then a—L. = s = Dy

9y J(@Zx+dZy+1)

For a system that conserves its Hamiltonian, similar to Lagrangian equation:

Therefore

d (oL aL_O
dz\ox/| odx

oL

px - ax
oL oL oL . aL
ax pX’ay pyrpx ax’py - ay

Nonimaging Optics
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The Hamiltonian of the system is:

, , , , dL dL
dH = p, dx + dp, x + pydy + dp,y — <adx +£
= —pxdx + xdp, — p,dy + ydp,
0H . OH . 0OH _ 0H
E e —Px;a = —Py,a—px = x,a—py =Y
0P, 0H (0H 0H ( 0H 0x
ﬂ N _apx<ax> " ox <6px> " 9x
Define a four vector field W = (%, by, ¥, y)
then the 4 dimensional divergence of W is 0.
If we use W on a closed surface
o(x, Py, P,) of afour space v(x, P, y, P), Gyds

then the incremental volume along dz
covered by such a surface is dV = | Wdzdo

According to Gauss’s theorem, fa Wdo =
J,Div W dv = 0, therefore the enclosed
volume dV = 0. dxdydp,dp, = constant

Nonimaging Of
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Limits to Concentration

e from 7L max sun~ 0.5 L

we measure Tsun ~6000° (5670°)
Without actually going to the Sun!
 Then from o T* - solar surface flux~ 58.6 W/mm?

— The solar constant ~ 1.35 mW/mm?

— The second law of thermodynamics

— Cmax ~ 44,000

— Coincidentally, C max = 1/sin’0

— This is evidence of a deep connection to optics
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Imaging Devices and Thelr Limitations

* If one were to ask the proverbial “man on the street” for a
suggestion of how one might attain the highest possible level
of concentration of, say solar flux a plausible response would
be to use a good astronomical telescope, perhaps the 200 inch
telescope on Mt. Palomar, or whatever one’s favorite telescope

might be.

* Of course such an experiment had better remain in the realm of

Imagination only, since beginning astronomers are admonished never to
point their telescope at the sun or risk catastrophic consequences to the
Instrument.

e But...

Nonimaging Optics 19



Concentration Limit of a Telescope

Concave Focusing

T]’ﬁlﬂﬂ]’
* Concentration limit
sin‘2¢ /4sin? 6
— ¢@.rim angle of the telescope
* Best concentration achieved

1/4s5in%6 when ¢ = 45°

» Falls short of the fundamental limit
by a factor 4!

— Now factors of 4 are significant in

6.

D=2rsiné$ C={(D/d)2 = (1/4) sin? 2¢ / sin?6.

technology (and many other forms of human < (1/4)1/ sin?6, < (1/4)Conm
d=2reinf/cosd
AR D/d = sin ¢ 008 ¢ / Sin 8
=sin24 /2 sin ©

Nonimaging Optics 20
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' Concentration Limit in 2-D Cases

 Entirely similar considerations can be applied to 2-D
or trough concentrators.

A straightforward generalization to a strip absorber
rather than a disk absorber gives a limit for say, a
parabolic trough of sin2¢ /2sin@

« Upper limit: 1//2sin@, for rim angle ¢ = 45°,

— This would be a useful configuration for a photo-voltaic concentrator,
with the strip consisting of solar cells.

Nonimaging Optics
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A more useful geometry for a parabolic trough thermal
concentrator Is a tubular receiver.

« Concentration relation Concave Fooming o
Sing / 7sin @

« Maximum value
1/7s1n & at 90° rim angle. ' Mi o

D2

e Falls short of the fundamental

limit by a factor 7! C=D/2nrsin 8, =gin /= sin By
<lmeind<(l/ %) Con

Nonimaging Optics 22
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Nonimaging Concentrators

* It was the desire to bridge the gap between the
levels of concentration achieved by common
Imaging devices, and the sine law of
concentration limit that motivated the
Invention of nonimaging optics.

Nonimaging Optics 23
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Failure of conventional optics

FAB << FBA where FAB is the probability of
radiation starting at A reaching B--- etc
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First and Second Law of Thermodynamics

Nonimaging Optics Is the theory of maximal
efficiency radiative transfer
It Is axiomatic and algorithmic based

As such, the subject depends much more on
thermodynamics than on optics

To learn efficient optical design, first study the

theory of furnaces.



(a) (b)

Radiative transfer between walls in an enclosure
HOTTEL STRINGS

Michael F. Modest, Radiative Heat Transfer, Academic Press 2003

Hoyt C. Hottel, 1954, Radiant-Heat Transmission, Chapter 4in
William H. McAdams (ed.), Heat Transmission, 3rd ed. McGRAW-HILL



Strings 3-walls
P12 = (Al + A2 — A3)/(2A1)

P13 = (Al + A3 — A2)/(2A1)

1
P23 = (A2 + A3 - A1)/(2A2)
2
qij = AiPij P12+ P13=1
P21+ P23 =1 3 EQs
Pii=0 P31+P32=1

Ai Pij = Aj Pji 3 Egs



A ucusco  Strings 4-walls

3

2

P12+ P13+Pl14=1
P21+ P23 +P24=1

P14 = [(A5 + AB) — (A2 + A3)]/(2A1)
P23 = [(A5 + A6) — (AL + Ad4)J/(2A2)
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Limit to Concentration

2
P23 = [(A5 + A6) — (A1 + A4)]/(2A2)S
P23=sin(0) as A3 goes to infinity
* This rotates for symmetric systems to sin %(0)
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Fermat’s Principle for Rays and Strings

Imaging Optics
S Op Nonimaging Optics:
m T
» U ) P
I
-{.. .,‘33,':“ = constant  [Permat 1601-1665] » where
n = index of refrariion || J‘F
1= path length T—

* What are strings?

Nonimaging Optics 0
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String Method

» We explain what strings are by way of
example.

» We will proceed to solve the problem of
attaining the sine law limit of concentration for
the simplest case, that of a flat absorber.

Nonimaging Optics 31
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String Method Example: CPC

* We loop one end of a

Edge ray Wave fiont W “string” to a “rod” tilted
\ 2 E at angle 6 to the aperture
| 4\ AA’ and tie the other end

I A to the edge of the exit
T~ aperture B’.
r « Holding the length fixed,
A we trace out a reflector

profile as the string
moves from C to A’.

Nonimaging Optics 32



String Method Example: CPC

2D concentrator with acceptance (half) angle 3

absorbing surface

Nonimaging Optics 33



String Method Example: CPC

Nonimaging Optics

34



String Method Example: CPC

Nonimaging Optics
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String Method Example: CPC

Nonimaging Optics
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String Method Example: CPC

Nonimaging Optics

37



String Method Example: CPC

stop here, because slope
becomes infinite

Nonimaging Optics

38



String Method Example: CPC

Nonimaging Optics

39



String I\/IethodC Example: CPC

o™
N©
we )
6"6\) -7
@6(3
A’ A AR R N U, A

,”( Compound Parabolic
’ Concentrator (CPC)

(tilted parabola sections)

Nonimaging Optics 40



String Method Example: CPC

Bigo ey Were fout ¥ /\ BA + AC = BB+ BA'

C
"x__ B BlA — B/A\|
4 N

BB'= AC = AA'sing

reflector profile N _
~_\ — AA'sin § = BB'
I AA 4
ndl = constant = = —
W BB' sing

AA
C(cone) = (_.)2 S
BB sm29

sine law of concentration limit!

Nonimaging Optics

41
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String Method Example: CPC

* The 2-D CPC is an ideal concentrator, I.e., It
works perfectly for all rays within the
acceptance angle 0,

 Rotating the profile about the axis of
symmetry gives the 3-D CPC

* The 3-D CPC is very close to ideal.

Nonimaging Optics
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String Method Example: CPC

* Notice that we have kept the optical length of
the string fixed.

* [For media with varying index of refraction
(n), the physical length is multiplied by n.

* The string construction Is very versatile and
can be applied to any convex (or at least non-
concave) absorber. ..

Nonimaging Optics
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Edge ray wave front

String method: fvlv) ndl = Constant
AC+AB’'+B'D=A'B+BD+2na

) AA sinf=2ra
\ AAI 1
\Reflector profile ) 27a ) sing

2a

String construction for a tubular absorber as would be appropriate
for a solar thermal concentrator.

Nonimaging Optics
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- String=MtetregExamplerCollimator for a Tubular
Light Source

etendue
conserved
-> ideal design!

v

tubular

light source

™~ kind of “involute”
of the circle

Nonimaging Optics 46
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The connection between entropy and information
is well known.'”**® The entropy of a system mea-
sures one’s uncertainty or lack of information
about the actual internal configuration of the sys-
tem. Suppose that all that is known about the in-
ternal configuration of a system is that it may be
found in any of a number of states with probability
p, for the nth state. Then the entropy associated
with the system is given by Shannon’s formula!”' ¢

S=-Y"p, Inp, . (10)

Nonimaging Optics
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The conventional unit of information is the “bit”
which may be defined as the information available
when the answer to a yes-or-no question is pre-
cisely known (zero entropy). According to the
scheme (11) a bit is also numerically equal to the
maximum entropy that can be associated with a
yes-or -no question, i.e., the entropy when no in-
formation whatsoever is available about the answer.
One easily finds that the entropy function (10) is
maximized when p,. =p, =3. Thus, in our units,

one bit is equal to In2 of information.
S=k(*log2) N

Nonimaging Optics 49
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The general concentrator problem

1 3
radiation absorber

source 2
aperture

Concentration C iIs defined as A2/A3

What is the “best” design?



Characteristics of an optimal concentrator design

\

X /3
radiation absorber

source 2
aperture

Let Source be maintained at T, (sun)
Then T; willreach T, & P53, =1

Proof: q,3=cT*AP;3 = 6 T,;*A;P,

But 5., =0T3*A; = Q5 at steady state
T, =T, (second law)—P3,=1 & T;=T;



15t law efficiency: energy conservation
Q12 = q13 = P1; = P13
2nd [aw efficiency:
APy, = A1 P13, but A1 P13 = A3P3
The concentration ratio C;

The maximum concentration ratio
Cmax COrresponds to minimum As
C is maximum IFF P3; =1
Recall that for maximum thermodynamics
efficiency

A1P1p = A1P13 = A3
Then A,P,; = A;

Crmax = 1/P21

Nonimaging Optics

1
radiation
source

\

2
aperture

/3
absorber

52



Roland, | hope Shanghai went well Hit 200C yesterday with just 330W DNI. Gary D. Conley~Ancora Imparo
www.b2uSolar.com
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d | Long string — Short String = L,sin6f
P21 - San

Nonimaging Optics 54



So that C,,,4, = 1/siné ,
Notice 6 is the maximum angle of radiation incident on A,
Generalize to 3-dimensional, rotational symmetry.

L,

C = 1 2
max =\ sin@

An alternative way to get the sine law is to consider the angular momentum
with respect to the axis of symmetry.
J=#xP
P =n(L,M,N)

(long string — short string
21 —

2
) = (sinf)?

], Is conserved

Nonimaging Optics
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Designing the thermodynamically efficient concentrator

We have used “strings” to find the limit of concentration, if we can use the
strings to design the optical system, we have a chance of meeting the limit.
6,/6, angle transformer

Etendue conservation Lya = L,b, L; = sinf,, L, = sinf,,asin8; = b sinb,

b/2

Nonimaging Optics 56



) UCMERCED

Nonimaging Optics

Straight line

/' bsin(o,)
/
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String method deconstructed

e 1. Choose source e 3. Draw strings
e 2.Choose aperture e 4. Workout P;,A4

5. P, A1 ==|). long strings — ), short strings| = A; = 0.554; = 0.124;

2
6. Fit A; between extends strings => 2 degrees of freedom, Note that
1
A; =cc' = 5 [(ab’ +a'b — (ab + a'b’)]
7. Connect the strings. Nonimaging Optics o8



Index of Refraction (n)

Recall Crax = n/sin8, so if 6 = —, we should be able to

concentration by n (or n2in three dimension). How?
Consider the air/dielectric interface.

Nonimaging Optics
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By momentum conservation,

cosa =ncospf

then
sinf,; = sin 6,

T T
(61 25—05»92 =§_ﬂ)
Soif8; =mn/2, 6, = arcsin(1/n) the critical angle.

Solution: design an angle transformer with 8, = 6.,0, = /2

Then € = —— = n (or n? for three dimensions) _
sin 6, Air (n=1)
or

P Dielectric (n)

Nonimaging Optics 60



How to design TIR concentrators
sin 8; = nsin #,'(inside the medium)

TIR condition 8; + 6, + 26, = w,6, = T — 260, — 0,'(or less)

P

Nonimaging Optics
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Lens-mirror

String [ ndl = constant

AB'+B'B=CA +A'B A
(AB'and A'B are the same) C
B'B=CA" = AA'sin6

Nonimaging Optics
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Some examples: n=1.5,0, = 42°

02 = 77:/2(900),9]’_ < 60, 91 <9

0, = 30°,0 = 19.5°,0, = 96° — 19.5° = 76.5°

sin 6, 1
C =— =0.97(—=
sin 6,

0.5

Soan f/1lens + TIR secondary = f# = 1597

Nonimaging Optics

n
= 0.97 =0.97¢C =29

= 0.34 That's really fast.

63



Examples

parabola, f at B

circle, center at B

parabola, f at B
parabola, f at B’
e

™
circle, center at B’




Analogy of Fluid Dynamics and Optics

phase space
(twice the dimensions of
ordinary space )

positions
momenta

incompressible fluid

general etendue

positions

directions of light rays x Lcosa
multiplied by the index of })/ (ciretional cusne)

refraction of the medium

A
volume in “phase space” is
conserved

Nonimaging Optics 65



Imaging In Phase Space

« Example: points on a line.

— An imaging system is required to
map those points on another line,
called the image, without

scrambling the points.

* |n phase space
— Each point becomes a vertical

L L ]
. .
L ]
® °
ﬂ} & L
O
. JJ B
object Z image
L 1T L
b) | r
x .
phase space picture

line and the system is required
to faithfully map line onto
line.

Nonimaging Optics 66



Edge-ray Principle

“IT 1 [Tl ¢ Consider only the boundary
o | . | or edge of all the rays.
i « All we require is that the
Fhisespecepice boundary Is transported

L L from the source to the target.
— The interior rays will come along . They

°) 7 F - . cannot “leak out” because were they to

cross the boundary they would first

become the boundary, and it is the

edge-ray method boundary that is being transported.
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Edge-ray Principle

* It is very much like transporting a container of
an incompressible fluid, say water.

* The volume of container of rays Is unchanged
In the process.
— conservation of phase space volume.

* The fact that elements inside the container mix

or the container itself 1s deformed is of no
conseguence.
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Edge-ray Principle

 To carry the analogy a bit further, suppose one
were faced with the task of transporting a
vessel (the volume in phase-space) filled with
alphabet blocks spelling out a message. Then
one would have to take care not to shake the
container and thereby scramble the blocks.

* But If one merely needs to transport the blocks
without regard to the message, the task Is
much easier.
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Edge-ray Principle

* This iIs the key idea of nonimaging optics
* This leads to one of the most useful
algorithms of nonimaging Optics.

* We shall see that transporting the edges only,
without regards to interior order allows
attainment of the sine law of concentration
limit.

Nonimaging Optics
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Flowline Method

Then [ ] *dA is conserved => Div ] = 0
Design principle: placing the reflector

along the lines of / does not disturb the
flow.

This proposal, originally a conjecture is
true for 2-D designs and for some 3-D
designs of sufficient symmetry, as usual
we teach by example: we start with
Lambertian (black body) source, find the
flow lines, examine the resulting designs
and their applications.

Sphere: flow line are radial, design
works in 2D and 3D.

Line(disc):How to find the flow lines

Phase Space Invariants

nds= Ei Pi dqi
Cl
C
q
1. ﬁ p, dx,
® [ important for
2 X dpi dpi dx; dx, nonmaging oHics]

i#]
{ [ important for
3 f gp, dP: dp, d"] d12d13 Liouville's Theorem]
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Flowline Method

Let 7 = (L, M, N) unit vector, then, recall
the Jacobean dL dM = NdQ,dQ = : Retlostor 9
dA on a unit sphere, dffz = NdA = dLdM
Soin general J = [ n?4dQ, for the time Spherical Saurce -~
being, keep n = 1.

So we can think of the flow line as the

average direction of J, works for a sphere.

Try for a disc (line).

Nonimaging Optics 75



Flow line designs

A

B

It is a property of the hyperbola that the angle to the forci (A,B) are equal,

Consider

Nonimaging Optics
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How to turn a slow lens to a fast lens - flow

line

Fermat BC + BF = B'F = BF'
Hyperbola B'F — BF = AF — A'F = AA’
BC = AA’ but BC = BB'sin6

AA' = BB'sin6
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Highlight Project—Solar Thermal

UC Merced has developed the External Compound Parabolic
Concentrator (XCPC)

XCPC features include:

— Non-tracking design gf\
— 50% thermal efficiency at 200°C ﬁ v

— Installation flexibility
— Performs well in hazy conditions

Displaces natural gas consumption and reduces emissions

Targets commercial applications such as double-effect
absorption cooling, boiler preheating, dehydration, sterilization,
desalination and steam extraction



UC Merced 250°C Thermal Test Loop






Testing

e Efficiency (80 to 200 °C)

* Optical Efficiency (Ambient temperature)
* Acceptance Angle
* Time Constant

* Stagnation Test
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Thermodynamically Efficient Solar
| Cooling

— Using energy from the sun to provide space cooling / refrigeration

— Well matched supply/load (i.e. High cooling demand on sunny days)

— If roof deployed, energy that would heat up building is diverted for
cooling

* Barriers
— Efficient cooling machines (double effect absorption chillers) require

high temperatures around 180 C

— Tracking collectors are problematic

— Absorption chillers do not respond well to natural variability of solar
insolation

* Solution
— Gas/Solar hybrid absorption chillers

— Development of new high temperature, fixed solar collector at UC
Merced
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XCPC

* Non-imaging optics:

— External Compound
Parabolic Concentrator
(XCPC)

— Non-tracking

— Thermodynamically
efficient

— Collects diffuse sunlight

— East-West and
North-South designs






Performance Comparison

Efficiency
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Solar Cooling at UC Merced

* Collectors
— 160 North/South XCPCs
— Concentration ratio ~ 1.18
— 50 m2 inlet aperture area

e Chiller (BROAD Manufacturing)
— 6 ton (23 kW) Lithium Bromide Absorption Chiller
— Double effect (COP ~ 1.1)
— Hybrid solar / natural gas powered
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System Diagram
UC Merced Solar Cooling Loop
2012
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Power Output of Solar Cooling
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Power Output of Solar Cooling 2012
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In Summary

e XCPC
— Fixed, high temperature solar thermal collector
— High thermodynamic efficiency
— Collects diffuse light
— Flexible installation

 UC Merced Solar Cooling Project
— 160 North/South XCPCs (~50 m2)

— 6 ton (23 kW) Li-Br Double Effect Absorption chiller
— Natural gas-powered chiller during system warm-up
— Direct solar powered cooling for about 6 hours

— Extended solar cooling for about 2 hours
— Average Daily Solar COP of about 0.38
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XCPC Applications

Absorption Chillers

Adsorption Chillers
Desiccant Cooling

Heat Driven Electrical
Power Generation

Steam Cycle Based
Products

Stirling Cycle Based
Products

Heat Driven Water
Treatment Technology

* Membrane
Distillation

e Heat Driven
Industrial Process

* Technology feasibility

* Economic
Competitiveness

e Market Potential

e Time to
commercialization
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The Best Use of our Sun

b2u Solar

Delivering BTUs from the Sun

nitin.parekh@b2usolar.co m
tammy.mcclure@b?2usolar.c
om

www.b2usolar.com


http://www.b2usolar.com/
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