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• State Inference:  
• Assumptions: One appliance 

switch at each time;  

• Calculate the most likely on/off 

appliance depend on the change 

∆Pl and the duration statistics 

f1 τl  (ON) or f0 τl  (OFF); 

 

 

 

• Change Detection:  
• Geometric Moving Average: 

adaptively capture the mean 

and variance with decay;  

• Threshold: |Score|>3; 
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• Conclusions: 
 

• Proposed a framework for efficient power disaggregation in 

commercial building; 

 

• Analyze the performance or both Markov Model method and Event 

Detection and proposed ways to improve them; 

 

• Future Goals: Work on improvement of the current method 

1. Improve the detection efficiency by more robust statistics, 

analyze the trade-off between accuracy and fast response; 

2. Data fusion, include other information for decision making; 

3. Implement the combined model and maximize the benefits 
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Smart grids suffer from performance degradation 

when metering becomes excessively detailed. Power 

disaggregation is a data mining technique that can 

be used to “extract” the behavior of individual 

appliances from a single, aggregate power signal, 

thus lowering sensor cost and network burden. 

Moreover, power disaggregation provides a more 

user friendly interface than high density network 

when privacy is a concern.  

 

In this work, power disaggregation methods are 

explored in terms of accuracy, consistency and the 

potential for real-time implementation.  

These are the aspects of power disaggregation that 

we have been working on this year:  

 

• Design a non-intrusive power disaggregation 

framework; 

• Improve the efficiency and accuracy of Markov 

Model based power disaggregation; 

• Improve the efficiency and accuracy of Event 

Detection; 

• Propose possible breakthrough based on 

previous methodologies; 

• Examine the robustness of various methods 

while deploying  in practical applications. 

Noise Cancellation by Spike Filtering 
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• Markov Model Based Method: view data stream as if 

generated from a Markov Chain 

 

• Benefit from early development in Hidden 

Markov Model (HMM); 

• Systematic theory for statistical inference and 

parameter learning; 

 

• Event Based Method: estimate the state by detecting 

ON/OFF events 

 

• Benefit from the development in Non-intrusive 

Load Monitoring (NILM) model; 

• Event Detection is a core component; 

• Hidden Markov Model (HMM): {xi,t} are the hidden state variables 

for the ith appliance, {yt} are observations: 

• HMM includes the most information from the dataset 

 

 

 

 

 

 

 

 

• Statistical Inference: Standard Viterbi Algorithm;  

 

 

 

 

 

• Example: “appliances” are a desktop, a laptop and a monitor; 

• Parameters of each appliance studied in advance 

• Results shown below: (left is the total load) 

• Captures most  important switching, >85% overall accuracy 

• Problems: several false switches (hard to implement in practical 

application although have high accuracy); 

• Possible Improvement: 1) Noise reduction; 2) Exploit Persistency; 

• Spike Filtering (SF):  

• Useful when the noise distribution is highly skewed 

• Trying SF on data stream composed by 5 devices 

Other Improvement and Combination 

of Two Methods 

• Markov Property: first order dependency 

• Extend to semi-Markov case: higher order dependency; 

 

 

• State Duration statistics (Gamma distribution) 

• Benefits: flexibility in describing non-linear or non-stationary data 

streams in Markov Model context. 

• Modified Viterbi algorithm (higher order Markov Model) 

• For higher order Markov Model, inference is very time consuming; 

• Accuracy improvement is limited, if not worse; 

• State Duration Model (usually Gamma distribution) is difficult to train. 
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• Simulated Power Stream based on real data (Slide #7), with add-on 

background/sensor noise (with variance 𝜎𝑏𝑛
2); 

• Model of appliance:  𝑝 𝑡, 𝑡0 = 𝛽𝑠𝑒
−
𝑡−𝑡0
𝜔 + 𝛽𝑒 1 − 𝑒

−
𝑡−𝑡0
𝜔 + ϵ, 𝛽𝑠 =

60 38 65 150 690 ,  𝛽𝑒 = 23 35 65 145 685 ,  ϵ~𝑁 0, 𝜎𝑖
2 + 𝜎𝑏𝑛

2 ;  
 

• First Question: how does 𝜎𝑏𝑛
2 impact our disaggregation results 
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• Result gets worse as 𝛔𝐛𝐧
𝟐 increase (lower than 

Markov Model Estimation), Reasons:  

• States mixed together with larger 𝜎𝑏𝑛
2; 

• Change detection degrades for larger 𝜎𝑏𝑛
2 (Left 

figure, change point detection rate decreases) 

𝑆𝑙 =  
𝑎𝑟𝑔max

𝑖
𝑃 ∆𝑃𝑙|𝑆𝑙 = 𝑖 𝑓0 𝜏𝑙      𝑖𝑓  ∆𝑃𝑙> 0

𝑎𝑟𝑔max
𝑖
𝑃 ∆𝑃𝑙|𝑆𝑙 = 𝑖 𝑓1 𝜏𝑙       𝑖𝑓  ∆𝑃𝑙< 0

 

Mean: 𝛽0 =
1

𝑑
 𝑝𝜏𝑒

−
𝜏−𝑡

𝜔𝑡−𝑑
𝜏=𝑡−1 , variance 

𝜎0 =
1

𝑑
 𝑝𝜏 − 𝛽0

2𝑒− 𝜏−𝑡 𝜔 
𝑡−𝑑

𝜏=𝑡−1
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Score Function:  𝑠𝑐𝑜𝑟𝑒 =
𝑝𝑡−𝛽0

𝜎0
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• Two blocks: Change detection & State inference 
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• Generalized Likelihood Ratio 

Test (GLRT) 

• Exact event position search 

• Computational intensive 

• Sequential Probability Ratio 

Test (SPRT) 

• Fast 

• Simple to implement 

• Alternative change detection algorithms 

• Combination of the Two methods 

• Event detection is fast and inclusive to 

new items 

• Markov Model is more accurate but 

unnecessarily time consuming; 

• Detection for catching event and 

Markov model for decision 

• Increases modestly computational burden; 

• Can also modestly improve estimation accuracy; 

Appliance ID 
HMM + Gaussian 

(Viterbi) 

HMM + Spike Filter 

(Viterbi) 

Monitor #1 25.7% / 49.1% 32.7% / 54.5% 

Monitor #2 56.7% / 77.1% 59.8% / 87.8% 

Desktop #1 96.0% / 94.2% 96.5% / 95.1% 

Water Heater – 

Pump 
 94.3%  / 94.7%  94.3%  / 95.1% 

Water Heater – 

Boiler 
 100% / 100%  100% / 100% 

Computation 9.5 sec / 130,000 Left Figure 

• Motivation: State is constant within Segments, HMM is over-trained; 


