BEARS | SinBerBEST

Architecture for Dense State Estimation of Buildings

Kevin Weekly and Professor s Alex Bayen & Costas J. Spanos Department s of Electricalk Engineering and Computer Sciences and Civil and Environmental Engineering University of California, Berkeley

NATIONAL RESEARCH FOUNDATION

Motivation

Buildings are not currently analyzed as a complete system.
 Dense sensing is needed to understand, model and optimize the building as a proper cyber-physical system.
 Monitoring of human activity is essential to understanding the 'demand' of operations.
 Potentially tremendous improvements in energy savings, efficiency and occupant comfort await.

2012 Main Objectives

 Design a modular and high-reliability server to accept and process sensor data.

The Problem

- Integration is fundamental to the project:
- Physical world \leftrightarrow Digital world
- Using power monitoring as a motivating example, demonstrate autonomous processing of the incoming data into a digestible form.
- Demonstrate novel visualization methods giving building managers the tools they need to check on the building.
- ______
- Sensor hardware ↔ High-performance computers
- □ Real-time reliable software ↔ Cutting-edge theory
- Scientific advancement and quality engineering are both essential to success of the project.

System Design (Power Monitoring)

Key Technologies

Sensing Environmental and Participatory

Communication 802.15.4, WiFi, RFID and Wired

Analysis

Sensing: Device-Level Power

- Find electrical energy that is being used unnecessarily.
- Device usage is a proxy for occupancy.

Blue: Total Power Use Red: PC Power Use Cyan: Laptop Power Use Green: Monitor Power Use

Sensing: Power measurement results

 Automatically measure charging curves of devices using instrumented power strip and mechanical

Top: Macbook charging. Bottom Left: IBM Thinkpad charging w/ 4hr cycle, 50% duty cycle. Bottom Right: Android phone charging w/ 1.5hr cycle, 33% duty cycle.

Analysis: Device disaggregation results

- Using Hidden Markov Model with Gaussian Emissions to compute ML state estimate.
- Compute ML power use given state

Inverse modeling and visualization

Communication: 802.15.4

- Low-power interoperable wireless backbone.
- Sink nodes collect data from neighboring sensor nodes and forward to internet server.
- XBee compatible sockets for other wireless hardware (e.g. ZigBee, TinyOS or WiFi)

Analysis: Real-time Device Disaggregation Design

- Measure individual device parameters from learning nodes and store in database.
- Compute state and power use estimates from aggregate feeds.

Summary

 Developed preliminary implementation of key technologies: Sensing, Communication, and Analysis in the

Future Goals

- Accept non-time-series and structured data, such as keycard reader logs.
- Develop modular architecture for

- context of device power monitoring.
 Modular server architecture allows "plugging in" of algorithms as they become available.
- Ready to accept other types of timeseries data, e.g. Temperature, Occupancy, light-level, etc..
- Efficient implementation runs at 79000 times real-time for a single stream.
- organizing and controlling of building actuators.
- Integrate system with other researchers' architectures and unify metadata strategy.

Berkeley Education Alliance for Research in Singapore Limited | Singapore-Berkeley Building Efficiency and Sustainability in the Tropics