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Abstract— The value created by aggregating behind-the-
meter distributed energy storage devices for grid services
depends on how much storage is in the system and the
power network operation conditions. To understand whether
market-driven distributed storage investment will result in a
socially desirable outcome, we formulate and analyze a network
storage investment game. By explicitly characterizing the set of
Nash equilibria (NE) for two examples, we establish that the
uniqueness and efficiency of NE depend critically on the power
network conditions. Furthermore, we show it is guaranteed that
NE support social welfare for general power networks, provided
we include two modifications in our model. These modifications
suggest potential directions for regulatory interventions.

I. INTRODUCTION

From the conventional power system wisdom that storing
electricity on a large scale is prohibitively expensive to the
widely accepted understanding that electric storage will play
key roles in grids with deep renewable penetration, the elec-
tricity industry’s view on electric energy storage, especially
those based on batteries, has dramatically changed over the
last two decades. This is driven by profound technological
and economic trends including the stunning reduction of the
costs of battery systems and the advance of power electronics
for programmable inverters. In this process, new storage
capacities are being connected to the grid, at a rate that grows
rapidly from year to year [1].Among the newly installed
storage capacities, an increasing portion consists of behind-
the-meter distributed storage devices. For instance, behind-
the-meter storage deployment in the U.S. sees a 79% year-
over-year growth in 2017 [2].

At today’s capital and installation costs, behind-the-meter
batteries often can only be cost-effective if they provide
multiple sources of revenue [3]. An important class of
revenue streams involve operating behind-the-meter batteries
to provide grid services, such as load shifting and peak
shaving. Thus investment decisions for distributed energy
storage are in part driven by the expectation of the revenues
generated in these use cases. Meanwhile, value created in
these use cases are usually tied to the operation conditions
of the power network, which depend in turn on how much
storage is connected to the grid. Therefore a fundamental
question regarding distributed energy storage investment
is: will this market-driven closed-loop dynamics lead to a
socially desirable level of storage investment?
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A. Contributions and paper organization

The paper examines this question in a specific context
where the distributed storage capacities at each distribu-
tion feeder1 are aggregated to participate in the wholesale
(transmission) electricity market. In the wholesale market,
a transmission-constrained multi-period economic dispatch
problem is solved to determine the operation of the grid and
the storage devices, and the locational marginal prices. These
prices then determine the payments to the storage owners.

To model the storage investment decisions of a potentially
large number of users residing on each distribution feeder,
we formulate a storage investment game with a contin-
uum of players (Section II) where each player determines
whether to install storage by considering the capital and
installation costs, the payment from participating in the
wholesale market, and an outside value for installing storage.
In two examples with different power network settings, we
establish qualitatively different results on the uniqueness
and efficiency of the Nash Equilibrium (NE) of the invest-
ment game by providing an explicit characterization of the
set of NE and comparing to several benchmark solutions
(Section IV and Section V). In particular, our results for a
complementary storage investment setup (Section V), that
NE are not unique and may not support social welfare,
are in stark contrast to prior results on storage investment
games [4], [5] where the power network constraints and
the impact of the storage capacities on the prices are not
considered. Despite these negative results, we then show in
Section VI that even in general network, NE of the storage
investment game are guaranteed to support social welfare,
provided that we impose two modifications to our original
setup. We then discuss potential real world implementations
of these modifications as changes to the aggregator business
model and the wholesale market bidding formats. The paper
is concluded in Section VII.

B. Literature

The power systems literature on electric energy storage can
be broadly categorized into storage operation and planning.
Studies on storage operation (see e.g. [6], [7] and references
therein) aim to devise efficient control rules for energy
storage devices, given some fixed storage capacities. The
storage planning literature (see e.g. [8], [9]) usually assume
a storage operation model and then address the questions
of storage sizing (i.e., how much storage to build) and

1We focus on behind-the-meter distributed storage devices because cor-
rectly aligned incentives are crucial for this segment of the energy storage
industry to properly grow. In contrast, front-of-meter storage projects are
often centrally planned and procured by utility companies.
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placement (i.e, how to allocate some total storage capacity
over the power network).

The problem of energy storage investment can be thought
of as a kind of planning study. However, different from
centralized planning studies where an optimization is solved
to determine the optimal storage capacities over the power
network, we obtain the storage capacities as natural outcomes
of the incentives in the storage investment game (through
NE). Storage investment game has been investigated in
prior studies [4], [5] where power network constraints and
the dependence of the prices on the storage capacities are
omitted. We demonstrate that qualitatively different results
can be obtained when these factors are considered.

Analogous to the storage investment problem is the trans-
mission investment problem (see e.g. [10]–[12]). Despite
substantial differences between energy storage devices and
transmission lines, energy storage can be modeled as a one-
directional transmission line that enables sending energy to
future time periods. As a consequence, intuitions developed
for the transmission investment problem sometimes can be
applied to the storage investment problem. For instance, our
example on complementary storage investment is inspired
by the impactful work on transmission storage investment of
Joskow and Tirole [10].

II. MODEL

Consider a setting where small investors residing on
the distribution feeders are represented by aggregators to
participate in transmission power market (Fig. 1).

Investors

Aggregator
at bus 1

Investors

Aggregator
at bus N

Transmission
Grid

… …

Fig. 1: Schematic for distributed storage investment

A. Transmission grid model

We consider a connected power transmission network with
the set of buses denoted by N , where the total number of
buses is N = |N |. For notational convenience, we assume
each bus is connected to a distribution feeder and perhaps a
power generation plant. In the context of storage investment
and planning, we consider the operation of the transmission
network over a finite horizon T , where the total number of
time periods is T = |T |. Here the operation horizon may
model hourly operation for a representative day or a longer
period, capturing the typical seasonal variation of the grid
operation data.

Denote the aggregate load, and controllable generation at
bus n ∈ N and time t ∈ T by dn,t and gn,t, respectively.
The cost of generating power at bus n and time t is modeled
as a convex quadratic function cn,t(gn,t), and the benefit for

consuming power is modeled as a concave quadratic function
bn,t(dn,t).

The storage capacity at bus n ∈ N , made available by
the aggregator at bus n to the transmission grid operator,
is denoted by Sn ≥ 0. The transmission grid operator
determines the control of the aggregate storage at each bus
n ∈ N , denoted by un,t, where un,t > 0 represents charging
and un,t < 0 represents discharging. The sequence of
charging and discharging operations must satisfy the physical
constraints of the energy storage. For simplicity, we utilize
a stylized model for energy storage and focus on the energy
constraints of the form

0 ≤
t∑

τ=1

un,τ ≤ Sn, t ∈ T , (1)

where we assume that the initial state of charge is zero.
The generation, load and storage operation determine the

net power injection into the grid. For each time t ∈ T , the
vector of net power injection

pt = gt − dt − ut ∈ RN

must satisfies power flow constraints. Utilizing a standard
linearized power flow model (i.e. DC approximation to AC
power flow), we can write the power flow constraints as

pt ∈ P := {x ∈ RN : 1>x = 0, Hx ≤ `}, t ∈ T , (2)

where the first constraint enforces power balance over the
grid and the second constraint ensures that the flow on each
transmission line does not exceed its thermal capacity.

The transmission grid operator solves the following opti-
mization, referred to as the multi-period economic dispatch
problem, to determine the operation of the grid and the
aggregate storage capacities:

J(S) := min
g,d,u,p

∑
t∈T

∑
n∈N

cn,t(gn,t)− bn,t(dn,t) (3a)

s.t. pt = gt − dt − ut, t ∈ T , (3b)
pt ∈ P, t ∈ T , (3c)
0 ≤ Lun ≤ Sn1, n ∈ N , (3d)

where matrix L ∈ RT×T encodes the battery dynamics and
is defined as

Ltt′ =

{
1, if t′ ≤ t,
0, otherwise.

The optimization identifies the optimal schedules for control-
lable generation, elastic load, and energy storage to minimize
the overall operation cost for the grid, respecting the physical
constraints imposed by the power network and the storage
devices. As the solution to (3) depends on how much storage
capacities are connected to the power grid, we denote the
solution of (3) by (g?(S), d?(S), u?(S), p?(S)).

This optimization also defines a set of prices, referred to
as locational marginal prices (LMP), that are used to clear
the transmission power market. In particular, denote the dual
solution associated with constraint (3b) by λ?t (S) ∈ RN ,
t ∈ T . Then λn,t(S) is the LMP at bus n and time t for a
given vector of storage capacity S. It is common practice
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in transmission markets to use these LMPs to calculate
the payments from/to market participants. For instance, the
payment to the generator at bus n and the (negative) payment
to the load at bus n are calculated as, respectively,

ΠG
n (S) = (λ?n(S))>g?n(S), ΠL

n(S) = −(λ?n(S))>d?n(S).

Similarly, the aggregate payment to the storage at bus n is

ΠS
n(S) = −(λ?n(S))>u?n(S). (4)

B. Aggregator model
We consider a simple aggregator model: in addition to

aggregating and representing the distributed storage in the
transmission market, the aggregator at bus n splits the
aggregate storage control signal to individual storage devices
and splits the aggregate payment to individual storage owners
proportionally. In particular, the payment received by indi-
vidual storage owner at bus n for offering one unit of storage
capacity is ΠS

n(S)/Sn.

C. Investor model
Residing on the distribution feeder connected to each

bus of the transmission grid, there are a large number of
small potential investors for distributed energy storage (e.g.
home owners who are interested to install residential behind-
the-meter batteries). We model these small investors as a
continuum, indexed by i ∈ In = [0, 1], n ∈ N . Motivated by
the lumpiness of the capital and installation cost as a function
of the battery capacity, we model each user’s decision on
storage investment as a discrete choice si ∈ {0, 1}. If si = 0,
the investor decides not to invest in any storage device.
This requires no cost and brings no benefit so the payoff
to the investor is 0. If si = 1, the investor determines to
invest in one (normalized) unit of storage. The payoff to the
investor i ∈ In in this case is 1

Sn
ΠS
n(S) + θi − κ, where κ

is the amortized capital and installation cost of the storage
device, and θi drawn from distribution Fn models the outside
value of storage, i.e., the value that the storage provides
to the investor in addition to the payment for participating
in the transmission market. Note that θi can only capture
values of the storage that are realized without significant
interference to the storage device’s ability to participate in
the transmission market (e.g., the reliability value of storage
that is realized in rare blackout events). In summary, the
payoff to investor i ∈ In is

πi(si, S) =

(
1

Sn
ΠS
n(S) + θi − κ

)
si. (5)

Since the only difference among investors In residing on
the same bus n is that they may have different outside value
θi, the individual investment decision is a function of the
outside value θi for some function σn : R 7→ {0, 1}:

si = σn(θi), i ∈ In, n ∈ N .
Given the individual decisions on whether to invest in

storage or not, the aggregate storage capacity at bus n is
simply the proportion of investors i ∈ In who decide to
invest in storage:

Sn = Eσn(θi) =

∫
In
σn(θi) dFn(θi). (6)

D. Solution concept and benchmarks

To this point, we have defined the network storage invest-
ment game, where the set of nonatomic players is ∪n∈NIn,
and the payoff of each player i is defined according to (5).
The payoff of player i ∈ In depends on the aggregate
decisions of other players who reside on both bus n and
other buses, through the coupling term ΠS

n(S)/Sn which
is determined by the solution of the multi-period economic
dispatch problem (3). In this sense, the game is an aggregate
game.

To understand the outcome of the game, we utilize the
solution concept of Nash:

Definition 1: A vector of storage capacity S ∈ RN
constitutes a Nash equilibrium2 if for each bus n ∈ N there
exists a mapping σn : R 7→ {0, 1} such that

Sn =

∫
In
σn(θi) dFn(θi), (7a)

and for all si ∈ {0, 1} and i ∈ In,

lim
ε→0

πi(σn(θi), S + εσn(θi)en) ≥ πi(si, S), (7b)

where en ∈ RN is the vector whose n-th entry is 1 and other
entries are 0’s.

In the definition above, we focus on aggregate storage
capacities since the game is an aggregate game. The mapping
σn specifies the individual investment decisions for investors
on bus n. Equation (7a) ensures that the individual invest-
ment decisions are compatible with the aggregate storage
capacity at each bus. Equation (7b) guarantees that there is
no unilateral incentive for any investor to deviate from the
decision specified by σn. In particular, we can interpret S as
the aggregate storage capacity of all the agents except i in
(7b). Then S + εσn(θi)en is the aggregate storage capacity
when agent i determines to make the investment decision
σn(θi). Since each player is infinitesimally small in our
game, the impact of agent i’s decision on the aggregate
storage capacity is vanishingly small as ε → 0. We
will denote storage capacity vectors satisfying conditions in
Definition 1 by Sne.

To better understand the characteristics of NE of the
storage investment game, we will compare NE aggregate
storage capacities with the following benchmarks.

1) Myopic investment: In this case, individual investors
will assume themselves as price-takers. Thus they make their
storage investment decisions based on the payoff function
πi(si, 0). That is, they use the status-quo LMPs (i.e., LMPs

2Definition 1 is not the standard definition of Nash equilibrium for
nonatomic game where the set of players consists of a continuum of small
agents. Specifically, in the standard definition, (7b) is replaced by

πi(σn(θi), S) ≥ πi(si, S), (7b’)

since each infinitesimally small agent cannot alter the aggregate storage
capacity. Nevertheless, (7b’) and (7b) are equivalent when the payoff
function πi is continuous with respect to the vector of storage capacities,
which is the case for Section IV and VI of the paper. We have chosen
(7b) instead of (7b’) since when the payoff function is discontinuous (as in
Section V), (7b) results in equilibrium that are consistent with that of the
finite version of the game whereas (7b’) does not.
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for the case without any storage investment) to guide their
storage investment decisions. We denote the resulting aggre-
gate storage capacity vector by Smyop.

2) Monopoly investment: In this case, a monopoly rep-
resents the overall benefit of all storage investors. The
monopoly solves the following optimization to determine
the investment decisions to maximize the total benefit of all
investors:

max
σn(·),Sn,∀n

∑
n∈N

∫
In
πi(σn(θi), S) dFn(i) (8a)

s.t. Sn =

∫
In
σn(θi) dFn(θi), ∀n ∈ N . (8b)

We will denote the aggregate storage capacity vector that
solves the program above by Smon.

3) Social welfare: If we take the social planner’s perspec-
tive, the optimal storage investment decision that maximize
the total social welfare is the solution of the following
optimization:

max
σn(·),Sn,∀n

∑
n∈N

∫
In

(θi − κ)σn(θi) dFn(θi)− J(S) (9a)

s.t. Sn =

∫
In
σn(θi) dFn(θi), ∀n ∈ N , (9b)

where the first term of the objective function is the total ben-
efit received by the storage investors excluding the transfers
(i.e. payments they received from the aggregators), and the
second term is the (optimal) operation cost the grid given the
storage capacity vector. Denote a vector of storage capacities
that solves (9) as Ssw. We will say a NE supports social
welfare if it achieves the same objective value as Ssw.

Albeit our solution concept and benchmarks are conceptu-
ally simple, it is challenging to characterize them explicitly
in general settings due to the coupling of storage investment
decisions induced by the power network and the payment
function for each investor i defined implicitly through the
solution of the multi-period economic dispatch problem (3).
To develop qualitative insights, we first develop structural
properties of the coupling term in Section III and then
analyze and explicitly characterize the network storage in-
vestment game in two specific settings in Section IV and
Section V.

III. STRUCTURAL RESULTS

As a first step to explicitly characterize the NE and the
benchmark solutions, we provide the following characteri-
zation to the coupling term in the payoff function of the
individual investors. Due to the space limit, all proofs are
omitted except that we sketch the proof of Theorem 3 (the
most technical result in the paper) in the appendix.

Proposition 1: For each bus n ∈ N ,

1

Sn
ΠS
n(S) =

T∑
t=1

ν?n,t(S) =

T∑
t=1

(
λ?n,t+1(S)− λ?n,t(S)

)
+
,

where ν?n(S) is the optimal dual solution associated with
constraint Lut ≤ Sn1 in (3), λ?n,T+1(S) := 0 and (x)+ :=
max(x, 0).

The expression above provides a simple and intuitive way
to calculate the payment to investors for each unit of storage
based on LMP differences across consecutive time periods.

One challenge in obtaining the benchmark solutions (8)
and (9) is the fact that these are infinite dimensional op-
timizations (i.e., optimal control problems). The following
structural result converts the infinite dimensional problems
into finite dimensional optimizations.

Proposition 2: An optimal individual storage investment
policy σn(θi) for problem (8) (or (9)) takes the form of

σn(θi) =

{
1 if θi ≥ θ̄n,
0 otherwise,

for some θ̄n ∈ R, n ∈ N .
In other words, optimal individual investment policies for

the monopoly investment benchmark and the social welfare
maximization benchmark are threshold policies based on the
outside values of the users, which are the only differentiating
factor among different users residing on the same bus. This
dramatically simplifies problem (8) and (9) since we can now
optimize over a vector of thresholds instead of all possible
individual investment policies.

IV. UNCONGESTED NETWORK

We start by considering a single bus network (N = 1)
with two time periods (T = 2)3. The single bus model has
been used in storage investment studies [4], [5] where power
network constraints are not considered or the network is
unlikely to be congested. In those studies, it is often the case
that NE is unique and supports social welfare. Our goal of
this section is to examine whether such properties also hold
in our model with a continuum of investors and without the
price-taker condition often assumed in prior studies [4], [5].

In particular, we consider the case depicted by the gen-
eralized network flow diagram [13], [14] in Fig. 2. In this
case, there is a supply at time 1 and a demand at time 2. We
assume the generation cost4 is

c(g) =
1

2
αg2 + βg, (10)

and the benefit function of the demand is

b(d) = γd, (11)

where α > 0 and b′(0)− c′(0) > κ. We also assume that the
storage edge in the generalized flow network is congested
(i.e., u?t = S for t = 1 and u?t = −S for t = 2) so that
there will be a price differential across the two periods5 and
Πi(S) > 0.

Equipped with the structural results in Section III, we are
ready to provide explicit solutions and benchmarks for the
storage investment game in the uncongested network case.

3We will omit bus index when there is no source of confusion.
4It suffices to have one of functions c(g) and −b(d) be strictly convex so

that the storage capacity impacts the LMP differential across the two time
period. Replacing the quadratic functions to be more general differentiable
convex functions or having both functions to be strictly convex does not
change our qualitative conclusions in this and the next sections.

5See e.g. [8] on how LMP differentials relate to the storage congestion
pattern.
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time 1 time 2
c(g)

b(d)

S

Fig. 2: Generalized flow diagram for the uncongested net-
work case (N = 1 and T = 2). Each node represents a bus
for a time period. At each node, an arrow pointing towards
the node represents a supply and an arrow pointing from the
node represents a demand. An edge connecting two nodes
within in same time period is a transmission line and an edge
connecting two nodes in different time periods is a storage.

.Lemma 1 (Benchmarks, uncongested network): For the
single bus and two period setup with the cost of generation
specified by (10) and the benefit of consumption specified
by (11), the following statements hold.

1) The myopic storage investment capacity is

Smyop = 1− F (κ+ β − γ),

where F is the cumulative distribution function of
outside value θi at the bus.

2) The monopoly storage investment capacity is the solu-
tion of the fixed point equation

Smon = 1− F (2αSmon + κ+ β − γ).

3) The social welfare maximizing storage investment ca-
pacity is the solution of the fixed point equation

Ssw = 1− F (αSsw + κ+ β − γ).
Theorem 1 (NE, uncongested network): Under the same

conditions of Lemma 1, the following statements hold.
1) NE exists and is unique.
2) Smon ≤ Sne = Ssw ≤ Smyop.
Lemma 1 and Theorem 1 can be easily digested through

Fig. 3 when θi ≡ 0. In Fig. 3a, the upward-sloping supply
curve is derived from the cost function of generation c(·)
in time period 1; the downward-sloping demand curve is
derived from the benefit function b(·) of demand6 in time
period 2. For a fixed storage capacity S, we can read
the LMPs in time periods 1 and 2 from the supply curve
and demand curve, respectively. Then the surplus received
by the supply, demand, and storage can be read from the
correspondingly labeled areas. The grey triangle is then the
surplus not achieved due to the fact that the storage capacity
is not large enough and so the storage is congested at
the optimal solution of the multi-period economic dispatch
problem. Because of the per-unit capital and installation cost
of storage κ, the actual cost for supplying one unit of energy
in time period 1 to serve the demand in time period 2 is
larger than just the generation cost represented by the original
supply curve. In Fig. 3b, this is captured by lifting the supply
curve by κ. As a result, the intersection of the demand curve
and the effective supply curve (i.e. the dashed blue line) is
both the social welfare optimal storage investment and the
NE. The fact that NE supports social welfare in this case
can be understood as a consequence of competition among

6The figure depicts a more general case; for our specific linear benefit
function (11), the demand curve is a constant function.

an infinite number of small players – more people investing
in storage increases the aggregate storage capacity which in
turn reduces the price differential across two time periods and
therefore reduces the revenue of each investor. The monopoly
decision under-invests because a smaller storage keeps a
price differential larger than κ, maximizing the profit all
the storage investors can make. This however is done at the
cost that the supply surplus and demand surplus are at lower
levels than that corresponding to the social welfare optimal
capacity. The myopic decision over-invests because it does
not account in the effect that the price differential diminishes
when more people invest in storage.

Energy

Pr
ice

Demand at
time 2

Supply at
time 1

S̄S

No congestion

Demand surplus
Storage surplus

Storage congestion cost

Supply surplus

�?
2(S)

�?
1(S)

(a) Supply, demand, and surplus allocation

Energy

Pr
ice

Demand at
time 2

Supply at
time 1



Smon SmyopSne = Ssw

(b) NE and benchmarks for uncongested
network

Fig. 3: Demonstration of NE and benchmarks for the case
without outside value (θi ≡ 0).

In the case with nonzero and stochastic outside value θi,
the situation is not as simple as demonstrated in Fig 3 and
so the solutions are often defined via fixed point equations
involving the distribution of the outside value F . However,
we have similar qualitative conclusions as discussed for
Fig. 3.

V. COMPLEMENTARY STORAGE INVESTMENT

Although our results in the previous section on uncon-
gested network deliver only positive messages (NE exists, is
unique, and supports social welfare), they may not remain
valid for more general settings. In this section, by extending
Joskow and Tirole’s example for transmission capacity in-
vestment [10] to incorporate multiple periods and storage, we
examine a setting where storage capacity at one bus perfectly
complements the storage capacity at another bus, so only if
both buses invest in storage no benefit for the grid will be
derived from the storage investment. The same example has
been shown to be a hard instance for the centralized storage
placement problem in prior work [8].

1583



Consider a two-bus three-period setting as demonstrated
by the generalized network flow diagram in Fig. 4. In this
case, the transmission line connecting the two buses is not
available in time period 1 and 3 (e.g., because the line is on
a scheduled maintenance in these periods). There is a supply
at bus 1 available in time period 1 with cost function c(g) as
defined in (10) and a demand at bus 2 in time period 3 with
benefit function b(d) as defined in (11), where α > 0 and
b′(0) − c′(0) > 2κ. Given the topology of the generalized
flow network, the only flow path to send energy from the
supply to demand is to first use the storage at bus 1, then
use the transmission line in time period 2, and finally use
the storage at bus 2.

time 1 time 2 time 3

bus 1

bus 2

c(g)

b(d)

S1

S2

` � S1, S2

Fig. 4: Generalized flow diagram for the complementary
storage investment case (N = 2 and T = 3). See the caption
of Fig. 2 for explanations of the figure.

To simplify, we assume the transmission capacity is sig-
nificantly larger than the storage capacities ` � S1, S2 and
the storage capacities at the solutions are such that at least
the storage at one bus is congested (otherwise the storage
capacities can be reduced without reducing the benefit of
storage for the grid). Since the transmission line is not
congested in time 2 and so the LMPs at both buses in time 2
are identical, we will denote the LMPs in three time periods
by λ?t (S), t = 1, 2, 3. Furthermore, we assume symmetry
between two buses: the distributions of outside values on
the two buses are the same F1 = F2 = F .

Under these assumptions, we can focus on symmetric
solutions (S1 = S2) for both NE and benchmarks. When
S1 = S2, the LMP at time period 2 is not uniquely
determined as the multi-period economic dispatch problem
is degenerate. We resolve this issue by defining

λ?2(S) = λ?1(S) + η(λ?3(S)− λ?1(S)),

and pick7 η = 1/2. As a consequence, the aggregate payment
for each unit of storage capacity on both buses is[

ΠS
1(S)

S1
,

ΠS
2(S)

S2

]
=


(λ?3(S)− λ?1(S)) · [1, 0], S1 < S2,

(λ?3(S)− λ?1(S)) ·
[
1
2 ,

1
2

]
, S1 = S2,

(λ?3(S)− λ?1(S)) · [0, 1], S1 > S2.

That is, the bus with strictly smaller storage capacity takes all
the surplus; when two buses have the same identical storage
capacity the surplus is shared equally between them.

We state the benchmark solutions and characterize the set
of NE in the following results.

7Changing η to other values in (0, 1) does not change our qualitative
messages.

Lemma 2 (Benchmarks, complementary storage): For the
two bus and three period setup with the cost of generation
specified by (10) and the benefit of consumption specified
by (11), the following statements hold.

1) The myopic storage investment capacity vector is
(Smyop, Smyop), where

Smyop = 1− F (κ).

2) The monopoly storage investment capacity vector is
(Smon, Smon), where Smon is the solution of the fixed
point equation

Smon = 1− F
(
αSmon + κ+

1

2
(β − γ)

)
.

3) The social welfare maximizing storage investment ca-
pacity vector is (Ssw, Ssw), where Ssw is the solution
of the fixed point equation

Ssw = 1− F
(

1

2
αSsw + κ+

1

2
(β − γ)

)
.

Theorem 2 (NE, complementary storage): Under the
same conditions of Lemma 2, the following statements hold.

1) NE exist but are not unique.
2) Any storage capacity vector (Sne, Sne) constitutes an

NE if Sne ∈ [Smyop, Ssw].
When θi ≡ 0, these solutions are depicted in Fig. 5. Since

serving the demand in time 3 with the supply in time 1
requires building storage on both buses, the supply curve is
lifted by 2κ in this case. The myopic solution under-invests
(in fact Smyopc = 0 if θi ≡ 0) because without anticipating
storage investment on the other bus, myopic investors will
expect no payment from the grid. Similar to the discussion
in the previous section, the monopoly decision also under-
invests to raise the profit for storage investors at the cost of
other grid market participants.

Energy

Pr
ice

Demand at
time 3

Supply at
time 1

Smon

2

Sne

Smyop Ssw

Fig. 5: Demonstration of NE and benchmarks for the case
without outside value (θi ≡ 0).

The major qualitative difference between the results in
this section and that in the previous section is that in the
complementary storage case NE are no long unique and may
not support social welfare. This may be understand analyt-
ically by noticing: (i) each investor takes a 0-or-1 decision,
(ii) the payoff function of each investor is discontinuous in
the storage capacity at the NE so even an infinitesimally
small investor switch his decision can dramatically change
the allocation of surplus between the two buses, and therefore
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(iii) there will be a non-trivial range of aggregate storage
capacities (which correspond to different portions of the
population) that can be NE since investing players do not
have incentive to switch to not investing (which leads to zero
payoff), and non-investing players do not have incentive to
switch to investing (which leads to a higher storage capacity
for his bus and zero payment from the grid). Intuitively, due
to the structure of the payment function ΠS

n(S), the investors
on each bus are incentivized to have a smaller aggregate
storage capacity than the other bus. This effect is known to
lead to inefficient NE in the transmission investment problem
[10].

VI. GENERAL NETWORK

Analysis in the previous section suggests that the positive
results in the uncongested network case may not hold in
general and there may be NE that do not support social
welfare. This indicates that the incentives as outlined in
Section II may need to be adjusted e.g. by regulators if a
social welfare optimal distributed storage investment level is
desired.

In the remainder of this section, we provide analytical
results that may suggest directions for such regulatory in-
terventions. This is done by characterizing the set of NE
and establishing that each NE supports social welfare for
general networks, provided that we include the following
two modifications/assumptions in our model:
A1 Continuous investment: Each investors may make a

continuous decision on how much storage to invest, i.e.,
si ∈ [0, 1] for all i ∈ I.

A2 Strict convexity: For each bus n ∈ N and time t ∈ T ,
the cost of generation cn,t(·) and the negative benefit of
demand −bn,t(·) are strictly convex.

A1 shifts the focus of the model on the lumpiness of
individual storage investment to the fact that investors usually
do have a range of choices in terms of the storage capacity
to be installed (e.g. the capacity of Tesla Powerwall can be
customized). Modeling the capital and installation cost by
κsi as done in (5) now becomes less accurate as it does not
capture the fixed cost of storage systems (e.g., cost of inverter
and installation). Another possible interpretation of A1 is
that in the aggregator business model, we allow each user to
only offer a part of the storage capacity to the aggregator if
the user has decided to invest and install a behind-the-meter
storage. In this setting, if si > 0 (i.e., the user invested
in storage), then real value si denotes how much storage
capacity the user is willing to release to the aggregator, with
the remaining capacity reserved for the user’s own use. In
view of discussions in the complementary storage setting, we
observe that users are indeed incentivized to offer a smaller
capacity to the aggregator in order to result in a smaller
aggregate storage capacity in his own bus which in turn leads
to a higher payment from the transmission market.

For power generation, A2 is often valid as strictly convex
costs model the increasing marginal cost of power generation
[15]. The justification of A2 for the demand side is less
clear. In particular, if the demand at some bus is inelastic,

then such an assumption does not hold. When we assume
the demand is always elastic, A2 amounts to diminishing
marginal return for consuming more electricity, which is
economically sensible. Alternatively, we can consider A2 as
a consequence of certain supply/demand function bidding
rule implemented by the transmission market operator. In
particular, if all the participants of the transmission market
is required to bid a linear supply (or demand) function
with a finite non-zero slope, then the corresponding cost (or
negative benefit) function in the multi-period economic dis-
patch problem (3) naturally is strictly convex and quadratic.
However, an issue with this interpretation is that a larger
discrepancy between the cost/benefit functions in the multi-
period economic dispatch problem and the actual cost/benefit
functions is expected when the supply/demand function is
restricted to a smaller function class [16], [17].

With these two modifications in place, we have the fol-
lowing main result:

Theorem 3: Under A1 and A2 and for general networks,
all NE support social welfare.

Theorem 3 does not guarantee the uniqueness of NE.
Indeed, consider a network with two buses connected by
a transmission line that is essentially uncapacitated and
assume there is no outside value so θi ≡ 0. Clearly, if
(Sne

1 , Sne
2 ) constitutes an NE, then any vector in the set

{(S1, S2) ∈ R2
+ : S1 + S2 = Sne

1 + Sne
2 } is also an NE.

Theorem 3, nevertheless, asserts that all NE will lead to the
same level of social welfare as measured by the objective
function of (9). Furthermore, any NE storage capacity vector
SNE also coincides with a solution of the social welfare
maximization program (9) and therefore is social welfare
optimal.

VII. CONCLUSIONS

We formulate and analyze a network storage investment
game where the distributed storage capacities at each distri-
bution feeder are aggregated to participate in the wholesale
electricity market. By explicitly characterizing the set of
NE and comparing with several benchmark solutions, we
show that (i) for an uncongested network, NE is unique
and supports social welfare, and (ii) in a complementary
storage investment setting, NE are not unique and may not
support social welfare. We then show that if we include
two modifications for the model, it is guaranteed that NE
support social welfare even for general power networks. With
caveats discussed in Section VI, these modifications may
be realized by changing the aggregator business model –
allowing each storage owner to offer only a portion of his
storage for grid use, and by restricting the bidding format in
the wholesale electricity market – requiring each wholesale
market participants (i.e., supplier or consumer) to bid a linear
supply or demand function with a finite non-zero slope.
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APPENDIX I
PROOF SKETCH OF THEOREM 3

Our proof strategy is outlined in Fig. 6. In words, for each
SNE, we consider a finite-player version of the game, where
there are m investors on each bus. We generate their outside
value θi, i ∈ In, by creating m independent samples from
the distribution Fn. In the finite-player game, we consider
two solution concepts: a storage capacity vector that solves
a set of mean-field equations, denoted by SMFE(m), and
a storage capacity vector that solves an empirical social
welfare optimization problem, denoted by Ssw(m). We show
in the following that 1) SMFE(m) approximates SNE when
m → ∞, 2) Ssw(m) approximates Ssw when m → ∞, and
3) for each m, SMFE(m) and Ssw(m) coincide.

SMFE(m) a.s.����!
m!1

SNE

=

Ssw(m) a.s.����!
m!1

Ssw

Fig. 6: Strategy for proving Theorem 3. The convergences
should be understood in a loose term – the precise meanings
can be found in the discussions below.

1) “SMFE(m) a.s.−−−−→
m→∞

SNE”: The first step is to establish
the following technical lemma.

Lemma 3: Under A1 and A2, for each n ∈ N , ΠS
n(S)/Sn

is locally Lipschitz continuous with respect to S.
Lemma 3 follows from Theorem 2 of [18] under Linear

Independent Constraint Qualification (LICQ), i.e., constraints
of (3) that are binding at the solution are linearly inde-
pendent. Due to the special structure of (3b)-(3d), we can
actually show that Lemma 3 holds even without LICQ
conditions. This is done by properly removing some binding
inequality constraints from (3c) until LICQ holds in a way
that does not change λ?n(S).

We then consider the following mean-field equations:

πi(σn(θi), S) ≥ πi(si, S), ∀si ∈ [0, 1], i ∈ Im,

Sn =
1

m

∑
i∈Imn

σn(θi), ∀n ∈ N , (MFE(m))

where Imn is the set of m players residing on bus n ∈ N ,
and Im = ∪n∈NImn . We denote a solution to MFE(m) by
SMFE(m).

Utilizing the Lipschitz continuity of the payment function
(Lemma 3) and the law of large numbers, we have the
following convergence result.

Lemma 4: Under the assumption of Lemma 3, for any
SNE, there exists a sequence {SMFE(m) : m ∈ Z+} such
that SMFE(m) is a solution to MFE(m) for m ∈ Z+, and
SMFE(m) converges to SNE almost surely as m→∞.

2) “Ssw(m) a.s.−−−−→
m→∞

Ssw”: Consider the following empir-
ical social welfare optimization problem:

max
∑
n∈N

∑
i∈Imn

1

m
(θi − κ)σn,i − J(S) (12a)

s.t. Sn =
1

m

∑
i∈Imn

σn,i, ∀n ∈ N , (12b)

where the decision variables are σn,i ∈ [0, 1], n ∈ N , i ∈
Imn , and Sn ∈ R+, n ∈ N . To simplify, we can eliminate
the variable Sn, n ∈ N and constraint (12b) by substituting
Sn in the objective function with 1

m

∑
i∈Imn σn,i. We then

observe that (12) is a sample average approximation [19] to
(9). Denote the optimal value of (12) by V m and the optimal
value of (9) by V ?. We then have the following result:

Lemma 5: Under the assumption of Lemma 3, V m → V ?

almost surely as m→∞.
3) “SMFE(m) = Ssw(m)”: By constructing an optimiza-

tion problem based on MFE(m) and connecting it to (12)
via duality theory [20], we have the following theorem:

Theorem 4: Under the assumption of Lemma 3, any Sm

that satisfies MFE(m) is an optimal solution to (12).
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