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A B S T R A C T

In this paper, an integrated approach for a holistic (involving notions of resiliency and sustainability) building
design is presented to select the optimal design alternative based on multiple conflicting criteria using the multi-
attribute utility theory (MAUT). A probabilistic formulation of MAUT is proposed, where the distributions of the
uncertain parameters are determined by a performance-based engineering (PBE) approach. Here PBE is used to
evaluate the building energy efficiency and sustainability in addition to structural safety. In the proposed fra-
mework, different design alternatives of a building are ranked based on the generalized expected utility, which is
able to include the most adopted probabilistic decision models, like the expected utility and the cumulative
prospect theory. The distributions of the utilities are obtained from the first-order reliability method to provide
(i) good tradeoff between accuracy and efficiency, and (ii) rational decision making by evaluating the most
critical realizations of the consequences of each alternative through the design point. The application of the
proposed approach to a building shows that design for resilience may imply design for sustainability and that
green buildings (alone) may be not resilient in the face of extreme events.

1. Introduction

Sustainable development of the urban communities is strictly re-
lated to the “disaster risk management” whose aim is the reduction of
the “disaster risk.” Following [1], it is noted that “natural disaster” do
not exist, only natural hazards. Thus, the disaster risk reduction may be
achieved by improving the practices of design and construction of the
buildings or through wise environmental management. The resilience is
defined as the “ability to prepare for anticipated hazards, to adapt to
changing conditions, to withstand and recover fast from disruptive
events induced by hazards” [2,3]. The sustainability is the “develop-
ment that meets the needs of the present without compromising the
ability of future generations to meet their own needs” [4]. Sustainable
development requires a holistic view involving jointly the main pillars
of sustainability and resilience (e.g. economy, ecology, society, tech-
nical and organizational) and being able to provide the real-time
management of the infrastructural systems, incorporating human sys-
tems, energy systems, environmental systems, and urban systems. This
can be obtained through an integrated design process, involving the

different lifecycle phases: design, operation and maintenance, up to
demolition or renovation. The task is challenging because there are
several sources of uncertainty, the number of stakeholders is high, and
the lifecycle of a building is long. Thus, it is crucial to develop an in-
tegrated methodical framework as a decision support tool for the op-
timal decision amongst alternatives subjected to uncertainty and in-
complete information.

In a decision-making process, the first step is the choice of suitable
performances …G G G, , , n1 2 expressed in terms of the direct interest of
various stakeholders to define the global performance of the system.
Together with the performances, the decision maker explores several
design alternatives and/or actions through the building lifecycle.
Subsequently, making use of the decision making system, the optimal
alternative may be determined with general consensus from the sta-
keholders. The optimal choice takes into account multiple conflicting
criteria by making use of the multi-attribute utility theory (MAUT) [5].
An important challenge of MAUT for sustainable design stems from the
different sources of uncertainty, giving rise to a problem of decision
under uncertainty or under risk. Thus, the objective of this paper is to
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develop a full probabilistic formulation of MAUT. The main task is
modeling the probability distribution of the chosen performances in
real-world engineering systems. We adopt the performance-based en-
gineering (PBE) methodology, which is extensively used for evaluating
system performance measures meaningful to various stakeholders, e.g.
monetary losses, downtime, and casualties [6]. PBE approach links, in a
natural way, the building design to the desired performances. For this
reason, from PBE emerges principles of resilient design and sustainable
design as well. Thus, PBE represents a simple and effective tool for
holistic building design.

The second step in a decision-making process is the determination of
the optimal probability distribution of the performances for different
design options. The most popular approach in civil engineering is the
equivalent cost analysis where all the performances are converted into a
monetary measure through suitable conversion factors; in such case, the
alternatives are compared in terms of the minimum expected cost [7].
However, research suggests that the risk cannot be entirely monetized
[8]. In the utility theory, it is recognized that subjective factors should
be taken into account in the risk evaluation, and this is accomplished
through the utility function, which measures the desirability of the
consequences. In such case the optimal alternative gives the maximum
expected utility [9]. It is well recognized that the expected utility is not
able to provide an accurate description of the observed behavior of the
decision makers [10,11]. Some improvements have been proposed, like
the cumulative prospect theory [12–14], which integrates the risk
perception inside the formulation of the utility function, and it re-
cognizes the subjective evaluation of the probability of occurrence of
rare events. The main difficulty is the definition of a suitable probability
weighting function measuring perception of the likelihood of the
events. Recently, some researchers have proposed to rank the alter-
natives through the adoption of risk measures (e.g. expected values,
quantiles, or superquantiles) applied to the performances [15,16].

In this paper, it is proposed to rank the alternatives through a var-
iant of the expected utility, called generalized expected utility (GEU),
able to incorporate most existing decision models (e.g. expected utility,
cumulative prospect theory, risk measures) as particular cases. It is also
proposed to model the risk aversion in the GEU by applying the su-
perquantile to the utilities U.

A rational decision making can be obtained through a good un-
derstanding of the consequences [17]. This is accomplished by de-
termining the distributions of the utilitiese through the first-order re-
liability method (FORM), which gives a good tradeoff between accuracy
and efficiency. Moreover, the knowledge of the design point provides
significant realizations of the consequences corresponding to chosen
alternatives/actions. The FORM results can effectively guide the deci-
sion maker to make a rational choice of the optimal design.

The decision-making process is dynamic in the sense that the op-
timal decision changes when new information is available. Such dy-
namic behavior is effectively represented through Bayesian analysis,
here modeled through the adoption of Bayesian Networks [18]. The
formulation can be used for updating the uncertain input variables, but
also the subjective utilities expressing the degree of preference of the
decision maker and of the different stakeholders involved in the design
process [19,20]. In cases where the scarcity of data makes the prob-
abilistic analysis problematic, the optimal decision may be explored
through sensitivity analysis of the decision outcomes to the various
input parameters.

The proposed framework represents a powerful tool for an extended
multi-objective system of management and design under uncertainty.
After describing the main features of the framework, it is applied to a
hypothetical office building located in California. The example shows
the main strengths of the proposed approach and its capabilities for
pursuing sustainable and resilient building design.

2. Multi-criteria decision making under uncertainty

Multi-criteria decision-making problems involve optimal design in
the presence of multiple design criteria, typically conflicting each other.
In this paper, we adopt the widely used multi-attribute utility theory
(MAUT) [5] whose aim is the selection of the “best” design alternative
from a pool of m preselected alternatives ⋯a a a, , , m(1) (2) ( ), explicitly
known in the beginning of the solution process. The evaluation of the
optimal solution is based upon the preferences of the decision maker
with respect to a set of performances, or decision criteria. From a
mathematical point of view, the performance of a system can be de-
scribed through a set of functions = x v xG g [ , ( )]r r , = ⋯r 1,2, where

= ⋯x x x x{ }q1 2 collects all the “design variables” containing the
control variable values representing the set of preselected alternatives,
i.e. ≡x ak k( ) ( ). The vector =v x v v x( ) { ( )}B D collects all the uncertain
parameters appearing in the decision-making problem where vB collects
the basic random variables, which are the parameters that cannot be
controlled by the decision maker, e.g. hazards or environmental con-
ditions and v x( )D collects the derived parameters that are affected by the
design variables, e.g. uncertain responses of the system.

2.1. Selection and definition of criteria and design alternatives

In a decision-making model, the Requirements are the most general
standpoints, e.g. Functional, Social, Environmental, and Economical
[21,22], which may be unfolded in several Criteria or Attributes (e.g.
lifecycle cost), where each criterion may involve several Performance
Indicators, e.g. energy expenditure and economic losses, see Table 1.
Typically, there are several criteria to consider and generally some of
them may be inevitably conflicting. The first step in the decision-
making problem is to identify from the criteria a set of n performances

…G G G, , , n1 2 collected in the vector G. The next step is to define a finite
set of m design alternatives, i.e. = …a a a a{ }m(1) (2) ( ) . The perfor-
mance of the system depends on all indicators …G G G, , , n1 2 and it is de-
fined through the multi-attribute function G xG [ ( )]s , while the perfor-
mance of the i-th alternative a i( ) reads as = ≡G x GG G G[ ( )] [ ]s

i
s

i
s

i( ) ( ) ( ) .

Table 1
Requirements, criteria and indicators for a building.

Requirement Criteria No. Performance Indicator

Functional Quality perception 1 User
2 Visitor

Adaptability to changes 3 Modularity

Economic Construction cost 4 Direct Cost
5 Deviation

Lifecycle cost 6 Utilization
7 Maintenance
8 Losses

Social Integration of science 9 New patents
Work for local companies 10 Turnover
Annoyance of construction 11 Dust

12 Noise
13 Street occupation

Safety of construction 14 Risk of casualties

Environmental Construction 15 Water consumption
16 CO2 emission
17 Energy consumption
18 Raw materials
19 Solid waste

Integration in environment 20 Visual
Utilization 21 Noise, dust, smell

22 Energy consumption
23 CO2 emission

Reintegration 24 Solid waste
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2.2. MAUT

In MAUT, each alternative receives a score through the definition of
suitable overall utility functions defined in terms of the chosen per-
formances. To rank the alternatives, it is necessary to define a measure
of the alternatives themselves. Generally, as discussed above, the per-
formances have different units of measure and they may be hardly
quantified into a single composite measure. This is resolved in MAUT
through the utility function, which converts the values of the perfor-
mances to scores representing the degree of preference of the decision
maker within the decision model. For each design alternative, an utility
function = …u u G G G( , , , )i i i

n
i( )

1
( )

2
( ) ( ) is defined such that the most and least

beneficial options have utilities =u 1max
i( ) and =u 0min

i( ) , respectively.
Other options have utility scores between these limits, which are higher
when the performance of a given alternative is better. The utility
function Gu ( ) is expressed as a combination of single attribute utility
functions u G( )j j of only one performance where the relative importance
is defined by weights wj, ⩽ ⩽w0 1j , ∑ == w 1j

n
j1 , of the different per-

formances. Several methods for assigning the weights are discussed in
[23]. A simple model of aggregating the attributes is the following
linear model.

∑… =
=

u G G G w u G( , , , ) ( )n
j

n

j j j1 2
1 (1)

The additive rule in Eq. (1) is generally valid if the consequences, ex-
pressed in terms of degree of preference of the decision maker, of the
interaction between indicators Gj are negligible.

The shape of the utility functions may contain information about the
risk attitude of the decision maker [24,5]. A simple single-attribute
utility function is linear as follows,

=
⎧

⎨
⎪

⎩⎪

⩽

− − < <
⩾

u g

g g

g g g g g g g
g g

( )

1.0

( )/( )
0.0

j j

j j min

j max j j max j min j min j j max

j j max

,

, , , , ,

, (2)

where gj min, and gj max, are respectively the most and least beneficial
values of the indicator, which is representative of a risk-neutral atti-
tude. If the values of the performances were known with certainty, the
optimal decision corresponds to the maximum utility, i.e.

= … = …u u g g g max u u u( , , , ) { , , , }opt opt opt
n

opt m( )
1
( )

2
( ) ( ) (1) (2) ( ) . However, in real-

world applications, the indicators Gj are uncertain. In such cases, the
alternatives are ranked through the expected utility EU, expressed as
follows,

∫ ∫= =g g g g gEU u dF u f d( ) ( ) ( ) ( )G G
i i i( ) ( ) ( )

(3)

while the optimal alternative maximizes the EU. In Eq. (3) and in the
rest of the paper, f indicates the probability density function (PDF), F is
the cumulative distribution function (CDF) and = −P F1 is the prob-
ability of exceedance (POE).

2.3. Utility theory

The dominant idea in the theory of choice under uncertainty is the
definition of a functional (·)V applied to the performance G, such that
if ⩾G G( ) ( )(1) (2)V V , then the alternative G(1) is preferred to the al-
ternative G(2). The expected utility EU, formulated in Eq. (3), represents
a class of functionals state-independent “linear in the probabilities.” By
assuming that the performance is the economic cost c and that the
decision maker is risk-neutral, see Eq. (2), the maximum EU is
equivalent to the minimum expected cost expressed as follows,

∫≡ =EU E C P c dcmax min [ ] min ( )
c c c

C
i( )

i i i( ) ( ) ( ) (4)

The last equation comes from an integration by parts of the expected
value of the cost [25] and it is attributed to the fact that the area under
the PC curve, is used in current PBE for comparing design decisions

[26].
Differently from expected cost, the EU may also incorporate the

behavioral concept of risk aversion of the decision maker, modeled
through the utility function u c( ) and expressing the attitude towards the
outcomes. From the other side, criticism of the axiomatic foundation of
EU are well-documented from the early days of the utility theory,
especially with reference to the independence axiom, which addresses
the so-called “rationality” in the EU theory [10,27,17]. A major feature
of the violations of the EU is the apparent overweighting of low prob-
ability events with extreme consequences. This issue is of great im-
portance for decision making in civil engineering. A popular solution is
represented from the cumulative prospect theory [12]. It has been al-
ready applied in civil engineering for modeling the risk aversion for
seismic risk mitigation of building structures [28,13,14]. It appears to
have the potential to describe the risk-averse choices of the decision
makers. However, its practical implementation in terms of elicitation of
the utility function and of the risk perception is not an easy task.

3. Generalized expected utility

It is noted that the utility function of the ith alternative = GU u ( )i i( ) ( )

is a random variable since G i( ) is a vector of random variables, see Eq.
(1). It depends on the corresponding joint PDF = gf f ( )G G

i i( ) ( ) of the in-
dicators G i( ), which can be determined from the PBE approach. Since
U i( ) is a random variable, it is completely defined by its CDF, which can
be evaluated through the structural reliability theory by introducing a
limit state function = −G GG ξ u ξ( , ) ( )s

i i( ) ( ) , where
= ⩽GF ξ Prob G ξ( ) [ ( , ) 0]U

i
s

i( ) ( ) , i.e.

∫= ⩽ =
⩽

G g gF ξ Prob u ξ f d( ) [ ( ) ] ( )
G GU

i i
G ξ

i( ) ( )
{ ( , ) 0}

( )
s i( ) (5)

The general framework of probabilistic MAUT is illustrated in Fig. 1.
In this figure, we consider two different alternatives a(1) and a(2) with
respect to two different performance indicators G1 and G2. For each
indicator we define the utility functions u g( )1 1 and u g( )2 2 , while the
multi-attribute utility function is = +u g g w u g w u g( , ) ( ) ( )1 2 1 1 1 2 2 2 . The
performances G1 and G2 are random variables whose joint distributions
for the two alternatives are f g g( , )G G

(1)
1 21 2

and f g g( , )G G
(2)

1 21 2
, shown in the

bottom left and right corners of the figure. Correspondingly, two uti-
lities are defined, =U u G G( , )(1)

1
(1)

2
(1) and =U u G G( , )(2)

1
(2)

2
(2) .

The knowledge of the CDF of U i( ) fully defines the utility of the ith

alternative, since its POE = ⩾GP ξ Prob u ξ( ) [ ( ) ]U
i i( ) ( ) is equal to the

complementary CDF, i.e. = −P ξ F ξ( ) 1 ( )U
i

U
i( ) ( ) , while the PDF may be

determined as = ∂ ∂f ξ F ξ( ) /U
i

U
i( ) ( ) . To rank the alternatives, one variant of

the cumulative prospect theory is proposed herein, called generalized
expected utility (GEU) and expressed as follows,

∫=GEU u d h F[ { }]i i
U

i( ) ( ) ( )
(6)

It is decision model embodying a fundamental distinction between at-
titudes to the outcomes, measured by u (·), and attitudes to the prob-
abilities, distorted through h F( )U . It is easy to see that if the prob-
abilities are not distorted, i.e. ≡h F F( )U U , then Eq. (6) gives the
expected value of U i( ) and the GEU is coincident with EU as shown
below,

∫ ∫≡ = = ≡c cGEU E U u dF u u dF EU[ ] ( ) ( ) ( )C
i i i

U
i i i( ) ( ) ( ) ( ) ( ) ( )

(7)

A challenge in GEU is represented from the elicitation of the utility
function. In the literature, some authors think that a rational decision
maker should be risk neutral by considering complete consequence
models. In [17], it is conjectured that the risk-aversion intrinsic to
nonlinear utility functions can be explained by the non-inclusion of
“follow-up” consequences. In other words, they assume that if perfect
information were available, then a rational decision maker would be
risk neutral. Suppose that the losses are given by the annual loss L, and
to reduce the risks, the decision maker decides to buy an insurance
cover, so that the annual cost c according to [29] becomes,
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= − + = + − = +c L L c L c L L φ L( ) ( ) ( )cov i i cov (8)

where ci is the cost of acquiring the protection (insurance premium and
deductible) while Lcov is the maximum monetary value that an in-
surance company will pay the owner of a property following an oc-
curring hazard. It is noted that the function φ depends on L, since ci and
Lcov depend on the probability of the incurred damage cost. In such
cases a decision maker may wish to apply a risk-averse utility function
u L( )RA to the losses L (without including the follow-up contributions
φ L( ) of the insurance) or alternatively to keep a risk-neutral attitude by
including them, i.e. +u L φ L[ ( )]lin . Of course, the two formulations are
equivalent from a mathematical point of view, i.e.

= +E u L E u L φ L[ ( )] [ ( ( ))]RA lin , but only the second one is re-
presentative of risk-consistent decision making. Although the GEU is
broadly general, in this paper, the adoption of linear utility functions
with complete models of the consequences is followed. In this manner,
the utility function expresses the preference ordering of the decision
maker, while his/her risk-aversion is described only through the func-
tion h F( )U , which defines the attitude toward the probability (“in-
creased uncertainty hurts” [30]). Several models for h F( )U can be
adopted and here a model is proposed as follows,

= ⎧
⎨⎩

⩽ ⩽
>

h F
F F α

F α
( )

0
0

U α U U

U

1

(9)

which gives rise to the following formulation

∫∫
∫

= ⩽ ⩽ = =GEU α E U u ξ
uf du

f du α
u dF( ) [ |0 ] 1

ξ
U

ξ
U

α
U

0

0
0

(10)

where ≡ = −ξ q α F α( ) ( )U U
1 , with ⩽ ⩽ξ0 1, is the α-quantile of U while

GEU α( ) is its α-superquantile q α( )U (or conditional quantile) [15,16].
The superquantile is an average of quantiles for probability levels

< ′ <α α0 , see Fig. 2, and it has some attractive mathematical

properties, like coherency and regularity. In figure it is chosen =α 0.20,
which means that the (risk-averse) choice of the decision maker is
driven by the choice of the 20% worst events. It is noted that for, =α 1,

=GEU U(1) , and ≡GEU EU , while the left tail of f u( )U , corresponding
to extreme events with low utility, is defined for low values of α, which
provide risk-averse decisions. In other words, with Eq. (9), the GEU
provides the conditional expected utility, while a risk-averse decision is
obtained by considering only the events providing the lowest utilities.
Thus, the GEU α( ), for <α 1, can be interpreted as the assessment of a
risk-neutral decision maker that is uncertain about the validity of the
distribution of = GU u ( ), see also [16]. Thus, the alternatives can be
ranked through the EU by setting =α 1. However, if uncertainty about
the suitability of the adopted distributions arises or if there is particular
concern for the potentially undesired consequences of unlikely events,
superquantiles with values <α 1 may be chosen. The suitable choice of
α can be made through sensitivity analyses, as discussed below.

4. Evaluation of the distribution of the utility functions

The utility = GU u ( )i i( ) ( ) is a function of random variables, which
also makes it a random variable itself. Our focus is on a multi-criteria
decision making, such that U i( ) takes into account several joint criteria,
typically conflicting, and whose consequences (direct and indirect) can
go beyond economic issues. However, in Eq. (1), the contributions of
several criteria are combined into a single random variable, while for
an informed decision, it would be useful to know the values of the most
critical realization of the performances, for a chosen degree of risk-
aversion. This is obtained by applying the FORM to U i( ), as described
below. The evaluation of the distribution of the utilities, Eq. (5), can be
performed using structural reliability theory.

Fig. 1. Schematic of the probabilistic MAUT.
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4.1. FORM

A good tradeoff between accuracy and efficiency is provided by the
FORM. After probabilistic transformation towards the standard normal
space u, Eq. (5) becomes,

∫= ⩽ =
⩽

u u uF ξ Prob U ξ φ d( ) [ ( ) ] ( )
uU

i i
g ξ n

( ) ( )
{ ( , ) 0}s

i( ) (11)

where uφ ( )n is an n variate PDF of the normal standard distribution,
while = −u ug ξ U ξ( , ) ( )s

i i( ) ( ) is the multi-attribute limit state function in
the normal standard space corresponding to the ith alternative. The
design point ∗u ξ( )i is the most likely realization of the random variables
giving rise to the event ⩽ ≡ ⩽u ug ξ U ξ[ ( , ) 0] [ ( ) ]s

i i( ) ( ) , i.e. the point
closest to the origin of the standard normal space of the limit state
surface =ug ξ( , ) 0s

i( ) and obtained as the solution of an optimization
problem,

= =∗u u uξ argmin g ξ( ) {‖ ‖: ( , ) 0}i s
i( ) (12)

The reliability index is defined as the distance to the design point
from the origin of the standard normal space = ∗uβ ξ ξ( ) ‖ ( )‖i i . Thus,
FORM gives an approximation of the distribution = −F ξ β ξ( ) Φ[ ( )]U

i
i

( ) ,
where Φ is the CDF of the normal standard distribution, to that defined
by Eq. (11) and it is accurate enough for most cases of practical interest.
If this is not the case, the recently proposed secant hyperplane method
[31,32] can be used.

4.2. The role of the design point for PBE-MAUT

Typically, a decision maker desires to choose the best alternative
having some information about the consequences of the choices. This
may be obtained easily by noting that

= − = −− −β ξ F ξ α( ) Φ [1 ( )] Φ (1 )i U
i1 ( ) 1 (13)

Through an algorithm of inverse reliability [33] for a chosen =β β0,
corresponding to probability = −α βΦ( )0 0 of the distribution of the
utility function, the threshold ξ i

0
( ) of U i( ) is determined such that

=β ξ β( )i
i

0
( )

0. Once ξ i
0
( ) is evaluated, the corresponding limit state func-

tion = −u ug ξ U ξ( , ) ( )s
i i i

0
( ) ( )

0
( ) is defined, and the design point

=∗ ∗u u ξ( )i i
i

0 0
( ) together with its mapping in the original space

=∗ ∗G G ξ( )i i
i

0 0
( ) are determined. Thus, each alternative is defined by a

single deterministic value ∗G i0 for a chosen quantile. The alternatives can
also be ranked through a deterministic MAUT by applying Eq. (1) to the
design points, i.e. = ∗GU U ( )i

i
( )

0 .
The application of MAUT to the design points corresponding to

different quantiles allows not only to choose the best design alternative,
but also to give information about the most critical realization of the
indicators for different degrees of risk. In this manner, the decision
maker can select, consciously, the best alternative, taking into account
all consequences of all scenarios, including the worst ones.

The optimal alternative is measured through the GEU, and the risk
perception described through the superquantile of U. Application of
FORM to a sequence of thresholds allows to determine, with reduced
computational effort, the quantities of interest GEU i( ). Moreover, fol-
lowing the procedure described above, it is possible to determine the
most critical realizations =∗ ∗G G GEU( )αi i

i( ) corresponding to the chosen
superquantiles. In this manner, the decision maker can have a clear
understanding of the utilities of the different alternatives together with
the corresponding consequences for different values of quantiles and
superquantiles, the latter including also the expected utility.

5. Joint distribution of the uncertain parameters

A key point in the determination of the distributions of the utility
functions is represented by evaluating the joint PDF gf ( )G

i( ) of the in-
dicators, Eq. (5). It is underlined that especially the tails of the utility
functions are sensitive to the distributions of the input parameters

…G G G, , , n1 2 , which therefore have to be modeled as accurately as pos-
sible, given the available information.

5.1. PBE approach

The Pacific Earthquake Engineering Research (PEER) Center de-
veloped a robust PBE methodology focused on earthquake engineering
(PBEE), which is based on explicit determination of system performance
measures meaningful to various stakeholders such as monetary losses,
downtime, and casualties based on probabilistic assessment [34,6]. The
PEER PBEE methodology consists of four successive analyses: hazard,
structural, damage, and loss. The methodology focuses on the prob-
abilistic calculation of meaningful system performance measures con-
sidering the involved uncertainties in an integrated manner. PBE can be
one of the solutions to estimate the performance corresponding to each
chosen performance, not only structural losses, but also other criteria
such as construction and maintenance costs, CO2 emission during the
construction and operation phases, and energy expenditure EE. This is
the approach followed in this paper. For the sake of clarity, consider as
an example some criteria corresponding to the seismic risk. In this case,
the following PBE variables can be adopted: (i) Intensity measure IM of
the hazard, e.g. the peak ground acceleration (PGA) or the pseudo-
spectral acceleration of the structure at its natural period of vibration;
(ii) Engineering demand parameter xEDP ( ), e.g. maximum peak inter-
story drift ratio along the building height or the peak roof acceleration;

Fig. 2. Schematic of the superquantile.
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(iii) Damage measure xDM ( ) denoting damage levels for structural and
non-structural components; (iv) performance xG ( ) (called decision
variable DV in the PEER PBEE framework). The performance can be the
economic loss xL ( ) due to seismic hazard in a given period, or the
corresponding functionality loss of the building. Therefore, we have

∑=P EDP P EDP IM p IM[ ] [ | ] ( )i
m

i m m
(14)

∑=P DM P DM EDP p EDP[ ] [ | ] ( )k
i

k i i
(15)

∑ ∑= +P L P L DM p DM P L C P C IM p IM[ ] [ | ] ( ) [ | ] [ | ] ( )n
k

n k k
m

n m m
(16)

where P X[ ]i is the POE of the i -th value of the random quantity Xi,
P X Y[ | ]i j is the conditional POE of Xi given Yj, p X( )i is the probability of
occurrence of Xi. With respect to the losses Ln, it is likely to observe
global collapse at higher intensity level, and in PEER-PBEE, this col-
lapse is treated separately from the case when no collapse occurs. Thus,
in Eq. (16), P L C[ | ]n is the POE of L given the collapse, and P C IM[ | ]m is
the probability of collapse given the i-th value of IM. In the case of
economic loss, the dependence on the price fluctuation factors can also
be considered. In the case of determining the POE of a specific sus-
tainability performance, the following variables can be used: (i) Climate
variable CV , (ii) Energy consumption xEC ( ), (iii) performance xG ( ),
e.g. CO2 emissions and energy expenditures EE,

∑=P EC P EC CV p CV[ ] [ | ] ( )k
i

k m m
(17)

∑=P CO P CO EC p EC[ ] [ | ] ( )
k

k k2 2
(18)

∑=P EE P EE EC p EC[ ] [ | ] ( )
k

k k
(19)

It is noted that the two different types of performances (hazard-related
and sustainability-related) can be interconnected, because the CO2 can
be generated by post-hazard repairs [35], i.e.

∑=P CO P CO DM p DM[ ] [ | ] ( )
k

k k2 2
(20)

Accordingly, the evaluation of the distribution of the performance CO2
may require the evaluation of the conditional distributions P CO EC[ | ]k2
and P CO DM[ | ]k2 .

The adoption of the PBE methodology [34] has several advantages:
(i) it is based on the total probability theorem, which requires ele-
mentary knowledge of probabilistic concepts and thus easily adopted
and interpreted in practice, (ii) it is already applied for the evaluation of
the safety of structures subjected to seismic hazard by practicing en-
gineers, making the extension to different hazards and other perfor-
mances straightforward, and (iii) the different stages of the analysis can
be performed by separate groups of multi-disciplinary research team.

Following [18], it is natural to formulate the proposed approach for
sustainable and resilient building design inside the framework of the
Bayesian networks, which are graphical probabilistic models that fa-
cilitate efficient representation of the dependence among random
variables [36]. The Bayesian networks have a transparent modeling,
and they can be adopted by users with limited background in prob-
abilistic or reliability analyses. Fig. 3(a) represents the classical PBE
framework applied to seismic risk formulated in terms of a Bayesian
network. Note that the derived variables as well as the performances
are expressed in terms of x , to denote their dependence on the design
variables, represented by the alternatives. In Fig. 3(b), the holistic
framework is represented, including issues of sustainability and resi-
lience. Here, three performances have been chosen: ≡G L1 (losses),

≡G CO2 2 emission and ≡G EE3 (energy expenditure), with the utility
functions expressed as =U U G G G( , , )1 2 3 . The links from DM (damage
measure) to L indicate that the distribution of L is conditioned on DM

(see Eq. (16)). In a similar manner, it is seen that the distribution of CO2
is conditioned on DM (see Eq. (20)) and energy consumption EC (see
Eq. (18)). The Bayesian networks are based on the Bayes’ rule and the
Bayesian inference, such that the network is updated in real-time when
new information is acquired, e.g. through network of sensors or new
experimental tests. The Bayesian networks can also be used to update
the utility functions u G( )j j or the knowledge of the weights wj. For
further details about this topic, the interested reader is referred to [18].

5.2. Probability distributions

If only a small sample of data is available, the marginal distributions
can be modeled using known parametric distribution, e.g. Normal,
Lognormal, or Weibull, with parameters determined through the
“method of the moments” or the “method of maximum likelihood.” A
statistical test to accept or reject the probability model is usually
adopted. However, for an assigned physical quantity, in presence of
samples of small size, it is often difficult to statistically justify a specific
single distribution. An effective tool for this purpose is represented by
the “method of the maximum entropy” [37,38] giving the least biased
distribution with respect to the available information. A kernel density
estimation based on the maximum entropy principle, which adopts
generalized moments, is recently proposed in [39]. The method, called
kernel density maximum entropy method, may be considered an ef-
fective approach for evaluating the optimal distributions of the per-
formances …G G G, , , n1 2 [40] and can also elicit the utility functions in
terms of preferences of the decision maker.

Fig. 3. Schematic of PBE-MAUT through Bayesian networks. (a) Performance-
based earthquake engineering, (b) Holistic design.
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In some cases, the scarcity of data may prevent the definition of a
reliable probability distribution, in terms of PDF and/or its parameters.
In such cases, suitable distributions based on engineering judgment
and/or expert opinion may be adopted [41]. If new information be-
comes available, it will be used to update the probability distributions
of the uncertainties through Bayesian updating, as discussed above and
in [18]. In cases where the lack of available data and statistics to de-
termine the input parameters can limit the usefulness of the method,
the sensitivity of the decision outcomes to the various input parameters

may then be analyzed.

6. Application example

A hypothetical four-bay five-story reinforced concrete (RC) office
building is considered. The building has plan dimensions of 20× 20m,
with floor-to-floor height of 3m. The floors and the roof are 200mm
thick RC slabs supported by columns whose spacing is 5m. Fig. 4 shows
plan and elevation views of this building. Given the fully symmetric

Fig. 4. Plan and elevation view of the example building. (a) Plan view, (b) Elevation view, frame C.
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configuration of the building, a two-dimensional model is adopted.
Following [42], the vertical design loads are: (i) self-weight, (ii) 958 Pa
for superimposed dead load given by electrical, mechanical, plumbing,
and floor and ceiling fixtures, and (iii) 2400 Pa for live loads of a typical
occupancy of an office building.

6.1. Resilient design – seismic risk

In this subsection, the seismic risk losses developed inside the fra-
mework of PBE will be discussed, see [6]. The corresponding for-
mulation in terms of Bayesian networks is shown in Fig. 3(a). The beam
sections are 300×500mm with 8 reinforcing bars of 16mm diameter,
providing 1.07% longitudinal reinforcement ratio. Three different de-
signs are considered as alternatives: (i) R1, where the columns are
300×300mm with 8 reinforcing bars of 14mm diameter (1.37%), (ii)
R2, where the columns are 300× 500mm with 8 reinforcing bars of
16 mm diameter (1.07%), (iii) R3, where the columns are
300×700mm with 8 reinforcing bar of 20mm diameter (1.20%).

The lifecycle cost L t( )n represents the total cost incurred by the
building during the lifecycle [43,29], i.e.

∑= + = +
=

x x x x xL t CC C t CC LCC( , ) ( ) ( , ) ( ) ( )n
k

n

F k
1 (21)

where x collects the design parameters, tn is the lifespan typically
measured in years, xCC ( ) is the initial cost, xC t( , )F k is the failure cost at
year tk, while xLCC ( ) is the lifecycle repair cost. Typically, when the
design is more conservative, the initial cost xCC ( ) increases, while the
failure cost xC t( , )F k decreases. The initial cost xCC ( ) is usually assumed
deterministic, and it includes the cost of the material in the respective
material manufacturing, material transportation, and on-site construc-
tion phases. The lifecycle failure cost is expressed as

= + =
+

+
+

x x x x xC t C t C t L
γ

L
γ

( , ) ( , ) ( , ) ( )
(1 )

( )
(1 )F k S k NS k

S

d
t

NS

d
tk k (22)

where xC t( , )S k and xC t( , )NS k are the contributions of repair costs of
structural and non-structural components, respectively, xL ( )S and

xL ( )NS are the corresponding annual losses under the assumption that
each year the existing damages are repaired, while γd represents the
discounting rate, which may be considered if the decision maker con-
siders less painful future costs which are discounted to the net present
value. The repair costs of the structural elements are dependent upon
the damage state [35] and include cost of the material in the material
manufacturing, material transportation, and on-site construction phases
and the debris disposal. For simplicity, in this numerical application,
the repair costs of the non-structural components are not considered,
i.e. =L 0NS .

For the three designs, the construction cost is =CC M1.6 "$"(1) ,
=CC M2 "$"(2) and =CC M2.6 "$"(3) , corresponding to a unit cost of

800 "$"/m2, 1000 "$"/m2 and 1300 "$"/m2, respectively. The assumed large
difference in the construction costs for the three projects is not to be
attributed only to the structural cost, which usually represents about
one quarter of the total cost, but from the different design options that
can arise during the construction stages of a building. The chosen va-
lues of the construction costs are here used to show some salient fea-
tures of the proposed approach, as described below.

6.1.1. Hazard Analysis
The building is located in Berkeley, CA whose latitude and longitude

are respectively 37.877° and −122.264°, the site class is assumed to be
D, with a shear velocity of 259m/s in the upper 30m , i.e.Vs30. The PGA
is chosen as an IM. The hazard curve is obtained by using the hazard
curve calculator application of OpenSHA [44]. Discrete values of PGA
between 0.05 g and 3 g with 0.05 g increments are chosen, for a total of
60 IM values. Hazard analysis includes also the selection of a suitable
number of ground motions (GMs) compatible with the site class and the

hazard curve. Here, we choose 81 GMs selected from the PEER next
generation attenuation (NGA) project GM database [45] with the fol-
lowing selection criteria for magnitude M, distance R, and shear wave
velocity Vs30: ⩽ ⩽M6 7.5, ⩽ ⩽R0 20 km, ⩽ ⩽V360 760 m/ss30 .

6.1.2. Structural Analysis
The structural analyses are developed by using the software

OpenSees [46]. Beams and columns are modeled using displacement-
based beam-column elements, i.e. dispBeamColumn, with fiber dis-
cretized sections. Core and cover concrete are modeled using Con-
crete01; the compressive strength of the concrete is 35MPa, the con-
crete strain values at maximum strength and at crushing strength are
0.2% and 0.5%, respectively. Sufficient shear reinforcement is assumed
to be provided to eliminate any shear failure. The reinforcing bars are
modeled with Steel01, whereas the yield strength of the steel is
420MPa, the elastic modulus is 200,000MPa, and the strain hardening
ratio is =b 0.05. The 81 GMs are scaled for each IM, giving a total
number of analyses of × =81 60 4860. For brevity, this study considers
only the maximum peak interstory drift ratio (MIDR) as EDP. For each
value of the IM, it is assumed that P MIDR IM[ | ]m follows a lognormal
distribution.

6.1.3. Damage Analysis
The definition of the seismic capacity plays a significant role in the

definition of the fragility curves. Because of the lack of data to develop
probabilistic capacity models, capacity values are based on HAZUS
[47], which classifies buildings in terms of their use (occupancy class)
and in terms of their structural system (model building type). The
considered building belongs to the building structure C1M (Mid-rise
concrete moment frame). As described in HAZUS, 4 damage states are
considered: slight (DS1), moderate (DS2), extensive (DS3), and Com-
plete (DS4). These qualitative performance levels can be represented by
deterministic interstory drift limits of 0.33%, 0.58% 1.56%, and 4.00%
of the story height for DS1, DS2, DS3, and DS4, respectively (mid-code
values). These values are treated as median values of a lognormal dis-
tribution, while the dispersion value is assumed to be 0.3 [48].

6.1.4. Loss Analysis
The loss functions are derived from [35] assuming that the prob-

ability distributions =P L DM DS[ | ]k , =k 1,2,3,4 follow lognormal dis-
tributions whose median values are 15 "$"/m2, 83 "$"/m2, 228 "$"/m2 and
1434 "$"/m2 for the 4 damage states with assumed dispersion of 0.3.
These values correspond to injecting epoxy resin for slight damage
(DS1), patching with shotcrete for moderate damage (DS2), jacketing
with RC for extensive damage (DS3), and demolition and reconstruction
for complete damage (DS4).

6.1.5. Decision under uncertainty
For the three designs R1, R2 and R3, the estimated annual loss [49]

is evaluated from Eqs. (14)–(16), by defining the distribution of the
annual loss LS

i( ), see Eq. (21). The total loss L i( ), =i 1,2,3 is given by the
contributions of the construction cost CC i( ) and of the lifecycle repair
cost determined by assuming a period ≡ =T t 50n years, where a dis-
count rate of =γ 3%d has been adopted, see Eq. (21). The resulting
distribution is lognormal obtained by fitting the data of 10,000 simu-
lations and it represents the performance of the decision problem. The
three distributions PL

(1), PL
(2) and PL

(3) are represented in Fig. 5. Since
⩽ ⩽P P PL L L

(2) (3) (1) everywhere, it follows that the expected utilities are
⩾ ⩾EU EU EU(2) (3) (1), see Eq. (4). Under these circumstances, the risk

aversion to the outcomes given by u g( ) and the risk perception toward
the unlikely events do not affect the decision. Of course, this is not
always the case, and an example is shown in Section 6.2. When only one
economic criterion is adopted, the maximum expected utility is coin-
ciding with the minimum expected cost. The expected costs of the three
alternatives are given by the area under the loss curves, and they are

=E C M[ ] 5.43 "$"(1) , =E C M[ ] 4.24 "$"(2) and =E C M[ ] 4.70 "$"(3) , with
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⩽ ⩽E C E C E C[ ] [ ] [ ](2) (3) (1) . Following [3], resilience includes both
robustness and recovery goals. The robustness goal is an acceptable
level of damage immediately following a hazard. The third design R3 is
more robust, so that the lifecycle repair costs are

< <LCC LCC LCC(3) (2) (1). However, it is seen that the optimal alter-
native is given by the design R2 because it provides a better tradeoff
between construction cost and lifecycle cost, i.e.

+ < +CC LCC CC LCC(2) (2) (3) (3).

6.2. Sustainable design

Sustainability analysis of the building is conducted in this subsec-
tion. Here, only economic and environmental requirements are con-
sidered. The chosen performances are ≡G CO1 2 emission and ≡G EE2

as energy expenditure. Two different energy plans are considered as
alternative sustainability designs, namely (i) Energy plan P1, where the
energy consumption is supplied 50% by electricity and 50% by natural
gas, and (ii) Energy plan P2 where the whole energy is supplied by
electricity.

6.2.1. Energy Consumption
Due to lack of data on the thermal insulation properties of the

building envelope, and of energy consumption inside the building,
average values reported in [50,51] are adopted. The energy intensity
for the sum of major fuels is 200.3 kWh/m /year2 in the West-Pacific
region, classified as climate zone 4. Since the area of all floors of the
considered building is =A 2000 mtot

2, its energy consumption EC is
400.6 MWh/year. For plan P1, where the building is operated by elec-
tricity and natural gas, the consumptions of electricity and natural gas
in the building are = =EC EC MWh year200.3 /el ng

(1) (1) . For plan P2,

=EC MWh year400.6 /el
(2) is supplied by electricity, while =EC 0ng

(2) .
These are assumed to be median values of lognormal distributions,
whose dispersion is 0.3.

6.2.2. Sustainability Analysis
From average rates reported in [51] for the West-Pacific region, the

CO2 emission by consuming electricity and natural gas are calculated as
=CO 177.4 kg/MWhel2, and =CO 228.6 kg/MWhng2, , respectively.

Buildings average prices for electricity and natural gas are assumed to
be =C 104 "$"/MWhel and =C 36.2 "$"/MWhng [50], respectively. For
the two energy plans P1 and P2, the estimated annual CO2 emission and
annual energy expenditure DV are evaluated from Eqs. (18) and (19),
respectively, and simulated through Monte Carlo simulation (MCS).

Subsequently, the lifecycle values EE i( ) and CO i
2
( ) =i 1,2 during a period

≡ =T t 50n years are evaluated.

∑= ⎡

⎣
⎢ +

+
+

⎤

⎦
⎥

=

x x x
EE t EC t C

γ
EC t C

γ
( , ) ( , )·

(1 )
( , )·

(1 )n
k

n
el k el

el
t

ng k ng

ng
t

1
k k (23)

∑=
=

x xCO t CO t( , ) ( , )n
k

n

k2
1

2
(24)

To calculate the net present value of DV , based on the estimations from
2010 to 2025, it is assumed that = −γ 0.4%el and = +γ 0.8%ng per year
for electricity (el) and natural gas (ng). Finally, it is assumed that the
same amount of CO2 is emitted each year; discount rates are not re-
commended for environmental impacts because of their non-monetary
values. A set of 100,000 samples of xCO t( , )n2 and xEE t( , )n is generated,
which follows a bivariate lognormal distribution. In Fig. 6, the marginal
distributions of CO2 and DV are presented, where it is seen that plan P1
is more advantageous in terms of economic requisite, while from an
environmental point of view, plan P2 is preferred. The expected values
of the performances are =E CO[ ] 4255.4 ton2

(1) and
=E CO[ ] 3716.6 ton2

(2) , with ⩽E CO E CO[ ] [ ]2
(2)

2
(1) , while

=E EE M[ ] 3.75 "$"(1) and =E EE M[ ] 7.30 "$"(2) with

Fig. 5. Distributions of three design alternatives R1, R2, and R3 with respect to
the performance loss L.

Fig. 6. Marginal distribution of the sustainable performance, (a) ≡G CO1 2

emission, (b) ≡G EE2 for the two energy plans.
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⩽E EE E EE[ ] [ ](1) (2) . The two performances are conflicting each other.
Moreover, differently from the total loss described in Fig. 5, ⩽P PCO CO

(1) (2)
2 2

for ⩽CO 3550 tons2 and ⩾P PCO CO
(1) (2)

2 2 for >CO 3550 tons2 . In this case,
the risk aversion may affect the optimal choice.

6.2.3. Decision under uncertainty
The possible inhomogeneous units makes the comparisons between

alternatives not straightforward. In the utility theory, this is resolved
using the utility functions. In the proposed GEU, we suggest to adopt a
linear model for the utility functions. In Eq. (2), c c[ ; ]j min j max, , are as-
sumed [0;10,000] ton and M[0;10] "$" for ≡G CO1 2 and ≡G EE2 , re-
spectively. A challenge in MAUT is the evaluation of the weights, ex-
pressing the degree of preference between the criteria. In such case,

>w 0.51 implies that the decision maker is oriented towards a sus-
tainable design since he/she expresses a degree of preference towards
the needs of the future generations (more weight to CO2, less weight to
DV ). It is of interest to develop a sensitivity analysis of the EU and the
GEU with respect to w1, see Fig. 7. Here the risk aversion inside the GEU
is measured through the superquantile with =α 0.10. As expected, it is
seen that for higher values of w1, the plan P2 is preferred, and it can be

considered more sustainable.An informed risk-decision requires how-
ever an understanding of the consequences of each choice. To this aim,
FORM is a powerful tool. Consider for example the case =w 0.8CO2 .
From Fig. 7, it is seen that for this choice of weights, ⩾EU EU(1) (2),
while ⩽GEU GEU(1) (2). It is reasonable to think that a risk-averse de-
cision maker can choose P2 in order to avoid the undesired con-
sequences although unlikely. To show this, FORM is applied to de-
termine the distribution of the utility functions, see Fig. 8. The circle
markers indicate the MCS results with 100,000 samples. It is clearly
shown that FORM is very accurate in addition to its well-known com-
putational efficiency even in the range of small probabilities. In
Fig. 8(b), the CDF of the utilities in semi-logarithmic scale are re-
presented, and it is seen that with plan P2, the probability of outcomes
giving the lowest utilities is very low. This is explained because

⩾GEU GEU(2) (1) for =α 0.10. In Fig. 9, the sensitivity analysis of GEU
with respect to α is presented; it is seen that a rational decision maker,
maximizing the EU (obtained for =α 1) should choose plan P1, while a
risk-averse decision maker can choose plan P2.

The choice of a suitable degree of risk-aversion α is supported by the
FORM solution. As noted in Eq. (13), = −α ξ β ξ( ) Φ[ ( )], so that for each
value of α, it is possible to determine the corresponding design point

Fig. 7. Sensitivity analysis of the GEU in terms of the weight ≡w wCO1 2, (a) EU,
(b) GEU measured through superquantile with =α 0.10, for the two energy
plans.

Fig. 8. Distribution of the utility functions corresponding to the two energy
plans.
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∗u ξ( ) and its mapping ∗g ξ( ) in the original space. Fig. 10 shows the most
likely realizations of the performances, given by the design points, in
terms of α. Thus, the proposed approach, allows to determine not only
the optimal decision with chosen degree of risk-averseness, but also the
corresponding design values of the criteria. From Fig. 10, it is seen that
plan P1 represents a better choice only if expected event occurs ≅α( 1).
However, if unlikely event occurs (low values of α), plan P1 would lead
to higher environmental impact. Conversely, plan P2 allows to keep the
environmental safety to reasonable low values in the two considered
scenarios (average and unlikely), although it leads to more economic
cost.

6.3. Sustainable and resilient design

In this subsection, sustainable and resilient design is considered.
The design alternatives considered in the previous subsections are
combined, providing six new alternatives: (i) P1-R1, (ii) P2-R1, (iii) P1-
R2, (iv) P2-R2, (v) P1-R3, and (vi) P2-R3. The chosen performances of
the decision-making problem are CO2 emission and the economic losses
L.

The main difference with respect to the previous analyses is the CO2
emission because of post-hazard repairs. The conditional probabilities

=P CO DM DS[ | ]k2 , =k 1,2,3,4 are derived from [35] assuming that
they follow lognormal distributions whose median values are 4 kg/m2,
27 kg/m2, 171 kg/m2, and 447 kg/m2 for the damage states slight, mod-
erate, extensive, and complete, respectively, where the dispersion is
assumed to be 0.3. In Fig. 11, the conditional annual probabilities

=P CO DM DS R[ | , 2]k2 and P CO P[ | 2]2 are compared, where
P CO P[ | 2]2 is the POE of the CO2 emission for given energy plan P2,
while =P CO DM DS R[ | , 2]k2 are the four POE of the CO2 emission for
the four considered damage states relative to the design R2. It is seen
that a “green” building characterized by low energy consumption is
sustainable only if the probability of occurrence of the damage states
DS3 and DS4 are very small. Thus, a sustainable design needs to be
resilient towards the extreme events. It is also noted that Fig. 11 shows
the conditional probabilities of CO2 given a damage state, irrespective
of the hazard which triggered it. Therefore, resilience toward any type
of hazard (wind, flood, blast, degradation, etc.) is a key ingredient for
sustainable design.

In Fig. 12, the sensitivity analysis of EU and GEU with respect to w1
is presented. In such case, >w 0.51 implies that the decision maker is
oriented towards a sustainable design since he/she gives more weight
to CO2 and less weight to L. The analysis shows that: (i) high resilience
guarantees high sustainability (e.g. design R3 has high values of EU and
GEU), (ii) a building cannot be sustainable if it is not resilient (e.g.
design R1 gives the lowest values of EU and GEU), and (iii) the sus-
tainability does not necessarily require a high level of resilience because
it is seen that the GEU of the alternative P2-R2 ranks better than P1-R3
(P2 is more sustainable than P1, while R3 is more resilient than R2.)

7. Concluding remarks

In this paper we have developed a full probabilistic formulation of
the multi-attribute utility theory (MAUT) for holistic building design.
The uncertainties have been modeled by random variables defined
through the performance-based engineering (PBE) approach.

In literature, the optimal decision in seismic risk analysis has often
been determined through the minimization of the expected cost or the
maximization of the expected utility. Typically, only cost analysis has
been considered inside the decision-making process. Here, the proce-
dure has been extended to the integrated framework which takes into
account not only the safety of the building, but also environmental
responsibility, human comfort (which can be considered in future stu-
dies), and energy consumption.

In the decision-making model, a generalized expected utility (GEU)
has been proposed to rank the alternatives. It is a variant of the known

Fig. 9. Sensitivity analysis of GEU in terms of α for the two energy plans.

Fig. 10. Sensitivity analyses of the performances in terms of α: (a) CO2 emis-
sion, (b) EE for the two energy plans.
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cumulative prospect theory and it can incorporate, as particular cases,
the expected utility and the expected cost. To quantify the risk per-
ception inside the GEU, the superquantile applied to the utility has been
proposed. This allows to take into account the risk-aversion of the de-
cision maker towards the extreme events. The considered example
building has also shown that the risk-averse “best” choice is typically
different from an average alternative.

Quantiles and superquantiles of the utilities have been determined
through the first-order reliability method (FORM), which offers some
distinct advantages: (i) good efficiency in terms of computational cost,
also in the range of the small probabilities, and (ii) the design point
gives information about the most critical realizations of the perfor-
mances. The latter advantage is of interest in a multi-criteria decision-
making process, because a good knowledge of the consequences may
support the decision maker in making rational choices.

The application to a hypothetical office building has shown the
strengths of the proposed approach as a decision support tool under risk
for holistic building design. The example has also shown that design by
resilience may imply design by sustainability and that a “green”
building design (alone) may not be resilient in the face of extreme
events.

In the proposed numerical study some simplifying assumptions have
been considered to underline some features of the approach, e.g. the

repair costs of the non-structural components (architectural, mechan-
ical and electrical) have not been included in the analysis, and the costs
of construction of the buildings have been chosen to show that greater
robustness may not imply necessarily the minimum total loss.
Illustrative aims drove the choice of the case study. Future research will
be devoted to the extension of the method in the framework of lifecycle
analysis [18] applied to real engineering buildings. In that regard,
several types of new design concepts and materials can be compared to
determine the most sustainable site-dependent solution for each type of
building.
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